@inproceedings{dd5ec3ad036d4109be4397efe34360df,
title = "Design considerations for quantum radar implementation",
abstract = "Quantum radar serves to drastically improve the resolution of current radar technology using quantum phenomena. This paper will first review some of the proposed ideas and engineering designs behind both entanglement radar and coherent state radar design schemes. Entanglement radar is based on first entangling two photons, then sending one of the entangled photons out towards the target, and keeping the other one at home. A correlation between the two photons is analyzed to obtain information. Coherent state quantum radar relies on using coherent state photons and a quantum detection scheme in order to beat the diffraction limit. Based on the above, a proposed design concept to implement of a coherent state quantum radar is presented for simultaneously determining target range and azimuth/elevation angles.",
author = "Bradsema, {Matthew J.} and Narayanan, {Ram M.} and Marco Lanzagorta",
year = "2014",
month = jan,
day = "1",
doi = "10.1117/12.2053117",
language = "English (US)",
isbn = "9781628410143",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
booktitle = "Radar Sensor Technology XVIII",
address = "United States",
note = "Radar Sensor Technology XVIII ; Conference date: 05-05-2014 Through 07-05-2014",
}