Design of a compliant revolute mechanism for accurate dynamic characterization of automotive steering columns

Martin L. Culpepper, Spencer Szczesny

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

It is difficult to obtain accurate measurements of the dynamic characteristics exhibited by automotive steering columns. The difficulties are due in-part to the use of lubricated contact bearings which support the column during testing. These bearings introduce damping, hysteresis, non-linear stiffness and clearance/preloaded constraints on the column. These error sources then mask the true dynamic behavior of the column, thereby preventing a better understanding of the relationship between column design, manufacturing tolerances and column vibration. With this paper, we introduce the concept of a revolute compliant mechanism that can be used in place of contact bearings to support steering columns during dynamic tests. These mechanisms do not exhibit the non-linear damping/stiffness and non-repeatable errors found in contact bearings. As a result, they can be used to design equipment that is capable of taking test data which matches theoretical predictions to within 2%. Experimental results obtained with this equipment suggest (more study is needed to confirm this) that manufacturing errors may be responsible for up to 20-30% error in predicting vibration amplitudes of components within the column, but only 2% error in predicting steering wheel vibration amplitude. Understanding this tolerance-response relationship (via this test equipment) is a necessary first step in understanding and eliminating steering wheel nibble vibrations.

Original languageEnglish (US)
Pages1589-1593
Number of pages5
DOIs
StatePublished - 2004
Event2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Salt Lake City, UT, United States
Duration: Sep 28 2004Oct 2 2004

Other

Other2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CitySalt Lake City, UT
Period9/28/0410/2/04

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Design of a compliant revolute mechanism for accurate dynamic characterization of automotive steering columns'. Together they form a unique fingerprint.

Cite this