Abstract
Recent processing developments in Bi18Pb0.4Sr2Ca2Cu3O x (BSCCO-2223) bars have produced bulk BSCCO-2223 bars with properties advantageous for power applications. Cold isostatically pressed (CIP) and sinter-forged BSCCO-2223 both have low AC loss, which make them desirable for use in power devices. Thermal conductivity of the CIP bars is lower than that of the previously used sinter-forged samples by a factor of 2. CIP bars with cross-sectional areas of =0.75 cm2 and carrying 250 A RMS transport current have AC loss values of 30 (oj/cycle-cm at 50 Hz and 77 K. A pair of prototype downlinks were designed and built with sinter forged bars to deliver a continuous AC current of 1500 A over a temperature gradient of 77 to 4.2 K while delivering about ≈200 mW of heat to the liquid-helium-cooled end. This paper will discuss the design considerations and modeling of downlinks, which supply high AC currents over the 77 to 4.2 K temperature gradient with low thermal losses.
Original language | English (US) |
---|---|
Pages (from-to) | 711-714 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 7 |
Issue number | 2 PART 1 |
DOIs | |
State | Published - 1997 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering