Design of alumina-zirconia composites with spatially tailored strength and toughness

Yunfei Chang, Raul Bermejo, Oldřich Ševeček, Gary L. Messing

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Composites of Al2O3-5vol.% t-ZrO2 (ATZ) and Al2O3-30vol.% m-ZrO2 (AMZ) layers were designed with 3-1 connectivity to explore the effect of spatially-dependent residual stress and layer distribution on mechanical behavior. ATZ composites with 'shallow' and 'deep' regions of AMZ, defined relative to the distance from the surface, were fabricated. Four-point bending tests on indented 3-1 composites showed crack arrest in the first compressive AMZ layer and a fracture strength nearly independent of indent size (i.e. minimum strength); the failure occurring in the region with thicker outer ATZ layers ('deep' region). Region dependent crack growth resistance was measured on SEVNB specimens and compared to theoretical predictions using a fracture mechanics model. Spatially tailored constant strengths were obtained, ranging between 148MPa and 470MPa; the maximum value corresponding to a 'shallow' region with a relatively thicker AMZ compressive layer embedded close to the tensile ATZ surface. The 3-1 design concept allows the fabrication of 'deep' and 'shallow' embedded regions within a unique composite architecture, thus providing a preferential path for crack propagation, opening new possibilities for design of composite structures with spatially-tailored crack growth resistance.

Original languageEnglish (US)
Pages (from-to)631-640
Number of pages10
JournalJournal of the European Ceramic Society
Volume35
Issue number2
DOIs
StatePublished - Feb 1 2015

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Design of alumina-zirconia composites with spatially tailored strength and toughness'. Together they form a unique fingerprint.

Cite this