Designing Retirement Strategies for Coal-Fired Power Plants To Mitigate Air Pollution and Health Impacts

Carla Campos Morales, Emily L. Pakhtigian, Joel Reid Landry, Hannah Wiseman, An T. Pham, Wei Peng

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Retiring coal power plants can reduce air pollution and health damages. However, the spatial distribution of those impacts remains unclear due to complex power system operations and pollution chemistry and transport. Focusing on coal retirements in Pennsylvania (PA), we analyze six counterfactual scenarios for 2019 that differ in retirement targets (e.g., reducing 50% of coal-based installed capacity vs generation) and priorities (e.g., closing plants with higher cost, closer to Environmental Justice Areas, or with higher CO2 emissions). Using a power system model of the PJM Interconnection, we find that coal retirements in PA shift power generation across PA and Rest of PJM, leading to scenario-varying changes in the plant-level release of air pollutants. Considering pollution transport and the size of the exposed population, these emissions changes, in turn, give rise to a reduction of 6-136 PM2.5-attributable deaths in PJM across the six scenarios, with most reductions occurring in PA. Among our designed scenarios, those that reduce more coal power generation yield greater aggregate health benefits due to air quality improvements in PA and adjacent downwind regions. In addition, comparing across the six scenarios evaluated in this study, vulnerable populations─in both PA and Rest of PJM─benefit most in scenarios that prioritize plant closures near Environmental Justice Areas in PA. These results demonstrate the importance of considering cross-regional linkages and sociodemographics in designing equitable retirement strategies.

Original languageEnglish (US)
Pages (from-to)15371-15380
Number of pages10
JournalEnvironmental Science and Technology
Volume58
Issue number35
DOIs
StatePublished - Sep 3 2024

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Designing Retirement Strategies for Coal-Fired Power Plants To Mitigate Air Pollution and Health Impacts'. Together they form a unique fingerprint.

Cite this