TY - GEN
T1 - Detailed boundary layer measurements on a turbine stator vane at elevated freestream turbulence levels
AU - Radomsky, R. W.
AU - Thole, Karen Ann
PY - 2001
Y1 - 2001
N2 - High freestream turbulence levels have been shown to greatly augment the heat transfer on a gas turbine airfoil. To better understand these effects, this study has examined the effects elevated freestream turbulence levels have on the boundary layer development along a stator vane airfoil. Low freestream turbulence measurements (0.6%) were performed as a baseline for comparison to measurements at combustor simulated turbulence levels (19.5%). A two-component LDV system was used for detailed boundary layer measurements of both the mean and fluctuating velocities on the pressure and suction surfaces. Although the mean velocity profiles appeared to be more consistent with laminar profiles, large velocity fluctuations were measured in the boundary layer along the pressure side at the high freestream turbulence conditions. Along the suction side, transition occurred further upstream due to freestream turbulence.
AB - High freestream turbulence levels have been shown to greatly augment the heat transfer on a gas turbine airfoil. To better understand these effects, this study has examined the effects elevated freestream turbulence levels have on the boundary layer development along a stator vane airfoil. Low freestream turbulence measurements (0.6%) were performed as a baseline for comparison to measurements at combustor simulated turbulence levels (19.5%). A two-component LDV system was used for detailed boundary layer measurements of both the mean and fluctuating velocities on the pressure and suction surfaces. Although the mean velocity profiles appeared to be more consistent with laminar profiles, large velocity fluctuations were measured in the boundary layer along the pressure side at the high freestream turbulence conditions. Along the suction side, transition occurred further upstream due to freestream turbulence.
UR - http://www.scopus.com/inward/record.url?scp=84905728029&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905728029&partnerID=8YFLogxK
U2 - 10.1115/2001-GT-0169
DO - 10.1115/2001-GT-0169
M3 - Conference contribution
AN - SCOPUS:84905728029
SN - 9780791878521
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer; Electric Power; Industrial and Cogeneration
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Y2 - 4 June 2001 through 7 June 2001
ER -