TY - GEN
T1 - Detection and analysis of self-disclosure in online news commentaries
AU - Umar, Prasanna
AU - Squicciarini, Anna
AU - Rajtmajer, Sarah
N1 - Publisher Copyright:
© 2019 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
PY - 2019/5/13
Y1 - 2019/5/13
N2 - Online users engage in self-disclosure - revealing personal information to others - in pursuit of social rewards. However, there are associated costs of disclosure to users' privacy. User profiling techniques support the use of contributed content for a number of purposes, e.g., micro-targeting advertisements. In this paper, we study self-disclosure as it occurs in newspaper comment forums. We explore a longitudinal dataset of about 60, 000 comments on 2202 news articles from four major English news websites. We start with detection of language indicative of various types of self-disclosure, leveraging both syntactic and semantic information present in texts. Specifically, we use dependency parsing for subject, verb, and object extraction from sentences, in conjunction with named entity recognition to extract linguistic indicators of self-disclosure. We then use these indicators to examine the effects of anonymity and topic of discussion on self-disclosure. We find that anonymous users are more likely to self-disclose than identifiable users, and that self-disclosure varies across topics of discussion. Finally, we discuss the implications of our findings for user privacy.
AB - Online users engage in self-disclosure - revealing personal information to others - in pursuit of social rewards. However, there are associated costs of disclosure to users' privacy. User profiling techniques support the use of contributed content for a number of purposes, e.g., micro-targeting advertisements. In this paper, we study self-disclosure as it occurs in newspaper comment forums. We explore a longitudinal dataset of about 60, 000 comments on 2202 news articles from four major English news websites. We start with detection of language indicative of various types of self-disclosure, leveraging both syntactic and semantic information present in texts. Specifically, we use dependency parsing for subject, verb, and object extraction from sentences, in conjunction with named entity recognition to extract linguistic indicators of self-disclosure. We then use these indicators to examine the effects of anonymity and topic of discussion on self-disclosure. We find that anonymous users are more likely to self-disclose than identifiable users, and that self-disclosure varies across topics of discussion. Finally, we discuss the implications of our findings for user privacy.
UR - http://www.scopus.com/inward/record.url?scp=85066898075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066898075&partnerID=8YFLogxK
U2 - 10.1145/3308558.3313669
DO - 10.1145/3308558.3313669
M3 - Conference contribution
AN - SCOPUS:85066898075
T3 - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
SP - 3272
EP - 3278
BT - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PB - Association for Computing Machinery, Inc
T2 - 2019 World Wide Web Conference, WWW 2019
Y2 - 13 May 2019 through 17 May 2019
ER -