Detection and analysis of self-disclosure in online news commentaries

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Online users engage in self-disclosure - revealing personal information to others - in pursuit of social rewards. However, there are associated costs of disclosure to users' privacy. User profiling techniques support the use of contributed content for a number of purposes, e.g., micro-targeting advertisements. In this paper, we study self-disclosure as it occurs in newspaper comment forums. We explore a longitudinal dataset of about 60, 000 comments on 2202 news articles from four major English news websites. We start with detection of language indicative of various types of self-disclosure, leveraging both syntactic and semantic information present in texts. Specifically, we use dependency parsing for subject, verb, and object extraction from sentences, in conjunction with named entity recognition to extract linguistic indicators of self-disclosure. We then use these indicators to examine the effects of anonymity and topic of discussion on self-disclosure. We find that anonymous users are more likely to self-disclose than identifiable users, and that self-disclosure varies across topics of discussion. Finally, we discuss the implications of our findings for user privacy.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PublisherAssociation for Computing Machinery, Inc
Pages3272-3278
Number of pages7
ISBN (Electronic)9781450366748
DOIs
StatePublished - May 13 2019
Event2019 World Wide Web Conference, WWW 2019 - San Francisco, United States
Duration: May 13 2019May 17 2019

Publication series

NameThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019

Conference

Conference2019 World Wide Web Conference, WWW 2019
Country/TerritoryUnited States
CitySan Francisco
Period5/13/195/17/19

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Detection and analysis of self-disclosure in online news commentaries'. Together they form a unique fingerprint.

Cite this