Detection and discrimination of mixed odor strands in overlapping plumes using an insect-antenna-based chemosensor system

Andrew J. Myrick, Kye Chung Park, John R. Hetling, Thomas C. Baker

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Olfactory signals, a major means of communication in insects, travel in the form of turbulent odor plumes. In terrestrial environments, an odor blend emitted from a single point source exists in every strand of the plume, whereas, in confluent plumes from two different odor sources, the strands have some chance of being coincident and comprising a new third odor in those strands. Insects have the ability to detect and interpret necessary olfactory information from individual filamentous odor strands in complex multifilament odor plumes. However, behaviorists have had no way to measure the stimulus situations they are presenting to their temporally acute insect subjects when performing Y-tube olfactometer or confluent pheromone plume wind tunnel assays. We have successfully measured the degree of plume-strand mixing in confluent plumes in a wind tunnel by using a multichannel insect-antenna-based chemosensor. A PC-based computer algorithm to analyze antennal signals from the probe portion of the system performed real-time signal processing and, following a short training session, classified individual odorant/mixture strands at sub-second temporal resolution and a few tens of millimeters of spatial resolution. In our studies, the chemosensor classified a higher frequency of strands of two different odorants emitted from two closely spaced filter papers as being "mixed" when the sources were located only 1 or 2 cm apart than when the sources were 5 or 10 cm apart. These experiments demonstrate the chemosensor's potential to be used for measuring odor stimulus situations in more complex multiple-plume environments.

Original languageEnglish (US)
Pages (from-to)118-130
Number of pages13
JournalJournal of Chemical Ecology
Volume35
Issue number1
DOIs
StatePublished - Jan 2009

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Biochemistry

Fingerprint

Dive into the research topics of 'Detection and discrimination of mixed odor strands in overlapping plumes using an insect-antenna-based chemosensor system'. Together they form a unique fingerprint.

Cite this