Detection of biomass burning smoke from TOMS measurements

N. C. Hsu, J. R. Herman, P. K. Bhartia, C. J. Seftor, O. Torres, A. M. Thompson, J. F. Gleason, T. F. Eck, B. N. Holben

Research output: Contribution to journalArticlepeer-review

215 Scopus citations

Abstract

A 14.5 year gridded data set of tropospheric absorbing aerosol index was derived from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) reflectivity difference between 340 and 380 nm channels. Based upon radiative transfer calculations, the reflectivity anomaly between these two UV wavelength channels is very sensitive to smoke and soot aerosols from biomass burning and forest fires, volcanic ash clouds as well as desert mineral dust. We demonstrate the ability of the TOMS instrument to detect and track smoke and soot aerosols generated by biomass burning in South America. TOMS data can clearly distinguish between absorbing particles (smoke and dust) and non-absorbing aerosols (clouds and haze). For South American fires, comparisons of TOMS data are consistent with the limited amount of ground-based observations (Porto Nacional, Brazil) and show generally good agreement with other satellite imagery. TOMS data shows large-scale transport of smoke particulates generated by the burning fires in the South America, which subsequentially advects smoke aerosols as far as the Atlantic Ocean east of Uruguay.

Original languageEnglish (US)
JournalGeophysical Research Letters
Volume23
Issue number7
StatePublished - Apr 1 1996

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Detection of biomass burning smoke from TOMS measurements'. Together they form a unique fingerprint.

Cite this