TY - JOUR
T1 - Detection of live Salmonella sp. cells in produce by a taqman-based quantitative reverse transcriptase real-time PCR Targeting invA mRNA
AU - González-Escalona, Narjol
AU - Hammack, Thomas S.
AU - Russell, Mindi
AU - Jacobson, Andrew P.
AU - De Jesús, Antonio J.
AU - Brown, Eric W.
AU - Lampel, Keith A.
PY - 2009/6
Y1 - 2009/6
N2 - Salmonella enterica contamination in foods is a significant concern for public health. When DNA detection methods are used for analysis of foods, one of the major concerns is false-positive results from the detection of dead cells. To circumvent this crucial issue, a TaqMan quantitative real-time RT-PCR (qRT-PCR) assay with an RNA internal control was developed. invA RNA standards were used to determine the detection limit of this assay as well as to determine invA mRNA levels in mid-exponential-, late-exponential-, and stationaryphase cells. This assay has a detection limit of 40 copies of invA mRNA per reaction. The levels of invA mRNA in mid-exponential-, late-exponential-, and stationary-phase S. enterica cells was approximately 1 copy per 3 CFU, 1 copy per CFU, and 4 copies per 103 CFU, respectively. Spinach, tomatoes, jalapeno peppers, and serrano peppers were artificially contaminated with four different Salmonella serovars at levels of 105 and less than 10 CFU. These foods were analyzed with qRT-PCR and with the FDA's Bacteriological Analytical Manual Salmonella culture method (W. A. Andrews and T. S. Hammack, in G. J. Jackson et al., ed., Bacteriological analytical manual online, http://www.cfsan.fda.gov/ ~ebam/bam-5.html, 2007). Comparable results were obtained by both methods. Only live Salmonella cells could be detected by this qRT-PCR assay, thus avoiding the dangers of false-positive results from nonviable cells. False negatives (inhibition of the PCR) were also ruled out through the use of an RNA internal control. This assay allows for the fast and accurate detection of viable Salmonella spp. in spinach, tomatoes, and in both jalapeno and serrano peppers.
AB - Salmonella enterica contamination in foods is a significant concern for public health. When DNA detection methods are used for analysis of foods, one of the major concerns is false-positive results from the detection of dead cells. To circumvent this crucial issue, a TaqMan quantitative real-time RT-PCR (qRT-PCR) assay with an RNA internal control was developed. invA RNA standards were used to determine the detection limit of this assay as well as to determine invA mRNA levels in mid-exponential-, late-exponential-, and stationaryphase cells. This assay has a detection limit of 40 copies of invA mRNA per reaction. The levels of invA mRNA in mid-exponential-, late-exponential-, and stationary-phase S. enterica cells was approximately 1 copy per 3 CFU, 1 copy per CFU, and 4 copies per 103 CFU, respectively. Spinach, tomatoes, jalapeno peppers, and serrano peppers were artificially contaminated with four different Salmonella serovars at levels of 105 and less than 10 CFU. These foods were analyzed with qRT-PCR and with the FDA's Bacteriological Analytical Manual Salmonella culture method (W. A. Andrews and T. S. Hammack, in G. J. Jackson et al., ed., Bacteriological analytical manual online, http://www.cfsan.fda.gov/ ~ebam/bam-5.html, 2007). Comparable results were obtained by both methods. Only live Salmonella cells could be detected by this qRT-PCR assay, thus avoiding the dangers of false-positive results from nonviable cells. False negatives (inhibition of the PCR) were also ruled out through the use of an RNA internal control. This assay allows for the fast and accurate detection of viable Salmonella spp. in spinach, tomatoes, and in both jalapeno and serrano peppers.
UR - http://www.scopus.com/inward/record.url?scp=66249088328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66249088328&partnerID=8YFLogxK
U2 - 10.1128/AEM.02686-08
DO - 10.1128/AEM.02686-08
M3 - Article
C2 - 19376910
AN - SCOPUS:66249088328
SN - 0099-2240
VL - 75
SP - 3714
EP - 3720
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 11
ER -