@inproceedings{fac7d14034864008abd7ce204975bdc3,
title = "Determination of optimal row spacing for a staggered cross-pin array in a turbine blade cooling passage",
abstract = "Crosspin configurations arc of interest in turbine blade design due to the enhanced cooling they provide. In addition, aosspins which extend from the walls of hollow blades provide structural integrity and stiffness to the blade itself. Numerous aosspin shapes and arrangements are possible, but only certain combinations offer high heat transfer capability while maintaining low overall total pressure loss. This study presents results from 2-D numerical simulations of coolant airflow through a turbine blade internal cooling passage. The simulations model viscous flow and heat transfer over circular pins in a staggered arrangement of varying pin spacing. Preliminary analysis over a wide range of Reynolds numbers indicates existence of an optimal spacing for which maximum heat transfer and minimum total pressure drop occurs. Pareto plots, which graphically identify the optimum data points with multiple optimization parameters, were obtained tor a range of Reynolds numbers and streamwise spactngs in a staggered crosspin arrangement. There is a steady increase in crosspin heal transfer up to a certain number of rows, then a gradual decrease in heal transfer in subsequent rows. Knowledge obtained from such findings can be used to determine the number of aosspins used, as well as the ultimate pin arrangement.",
author = "Donahoo, {E. E.} and Kulkarni, {A. K.} and Belegundu, {A. D.} and C. Camci",
note = "Publisher Copyright: Copyright {\textcopyright} 1998 by ASME.; ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1998 ; Conference date: 02-06-1998 Through 05-06-1998",
year = "1998",
doi = "10.1115/98-GT-149",
language = "English (US)",
series = "Proceedings of the ASME Turbo Expo",
publisher = "American Society of Mechanical Engineers (ASME)",
booktitle = "Heat Transfer; Electric Power; Industrial and Cogeneration",
}