Determining accelerated charging procedure from half cell characterization

William Yourey, Yanbao Fu, Ning Li, Vince Battaglia, Wei Tong

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

For implementation and consumer acceptance of electric vehicles, it is critical that the convenience of fueling internal combustion engines will not be lost for a transition to electric vehicles to be made. Although this complex issue involves many facets, ranging from recharging station infrastructure to technology development, one key component is “refueling” in a short period of time. Possible solutions would be battery replacement or recharge time comparable to that of filling a gas tank. This study provides an investigation for the development of an accelerated full-cell charge procedure through an investigation and characterization of half-cell performance. Negative and positive half-cell polarization curves at various rates were used to determine the maximum rate for each step of the lithiation process. This analysis was then applied to the LiNi1/3Mn1/3Co1/3O2 (NMC)/graphite full cells, charging cells to 80% state of charge in ∼34 minutes and showing capacity fade over 75 cycles similar to cells cycled using conventional constant-current-constant-voltage (CCCV) charge procedure.

Original languageEnglish (US)
Pages (from-to)A1432-A1438
JournalJournal of the Electrochemical Society
Volume166
Issue number8
DOIs
StatePublished - 2019

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Determining accelerated charging procedure from half cell characterization'. Together they form a unique fingerprint.

Cite this