Deuterium uptake and sputtering of simultaneous lithiated, boronized, and oxidized carbon surfaces irradiated by low-energy deuterium

F. J. Domínguez-Gutiérrez, P. S. Krstić, J. P. Allain, F. Bedoya, M. M. Islam, R. Lotfi, A. C.T. Van Duin

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We study the effects of deuterium irradiation on D-uptake by simultaneously boronized, lithiated, oxidized, and deuterated carbon surfaces. We present analysis of the bonding chemistry of D for various concentrations of boron, lithium, oxygen, and deuterium on carbon surfaces using molecular dynamics with reactive force field potentials, which are here adapted to include the interaction of boron and lithium. We calculate D retention and sputtering yields of each constituent of the Li-C-B-O mixture and discuss the role of oxygen in these processes. The extent of the qualitative agreement between new experimental data for B-C-O-D obtained in this paper and computational data is provided. As in the case of the Li-C-O system, comparative studies where experimental and computational data complement each other (in this case on the B-Li-C-O system) provide deeper insights into the mechanisms behind the role that O plays in the retention of D, a relevant issue in fusion machines.

Original languageEnglish (US)
Article number195901
JournalJournal of Applied Physics
Volume123
Issue number19
DOIs
StatePublished - May 21 2018

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Deuterium uptake and sputtering of simultaneous lithiated, boronized, and oxidized carbon surfaces irradiated by low-energy deuterium'. Together they form a unique fingerprint.

Cite this