TY - GEN
T1 - DEVELOPMENT AND EVALUATION OF SHAPED FILM COOLING HOLES DESIGNED FOR ADDITIVE MANUFACTURING
AU - Furgeson, Michael T.
AU - Veley, Emma M.
AU - Yoon, Christopher
AU - Gutierrez, Daniel
AU - Bogard, David G.
AU - Thole, Karen A.
N1 - Funding Information:
The authors would like to thank Pratt & Whitney and the U.S. Department of Energy - National Energy Technology Laboratory for sponsoring research presented in this paper. This paper is based upon work supported by the Department of Energy under Award Number DE-FE0025011. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Furthermore, note that some color schemes presented in this paper are sourced from two online references. Color Brewer by Cynthia A. Brewer [27] and the Matlab function Linspecer created by Jonathan C. Lansey [28].
Publisher Copyright:
Copyright © 2022 by ASME.
PY - 2022
Y1 - 2022
N2 - Film cooling remains a critical technology for cooling gas turbine components. In recent years, additive manufacturing (AM) has been used to develop novel film cooling hole designs which significantly increase the film cooling effectiveness. However, engine scale AM builds have imperfections and roughness that can have a noticeable effect on performance. In this study, 9-9-3 shaped film cooling holes were constructed at engine scale using metal AM, specifically direct laser metal sintering (DMLS). These “as built” geometries were characterized through computerized tomography (CT) scans to quantify deviations from holes with design intent, or “as-designed” holes. To evaluate the performance of the “as-built” holes compared to “as-designed” holes, both adiabatic and overall cooling effectiveness were measured experimentally for 5x scale models. The larger scale enabled the use of finite deposition modeling (FDM) to construct hole geometry that closely matched the “as-designed” holes and the CT scans of the “as-built” holes. Two versions of the 9-9-3 hole were studied, the 9-9-3 rounded inlet (RI) hole with rounding at the inlet, and the 9-9-3 rounded inlet and exit (RIE) hole with additional rounding at the hole inlet, and rounding at the hole exit. Results showed that the adiabatic effectiveness and overall cooling effectiveness for the “as-built” holes were similar to the performance of the “as-designed” film cooling holes for both hole geometries tested.
AB - Film cooling remains a critical technology for cooling gas turbine components. In recent years, additive manufacturing (AM) has been used to develop novel film cooling hole designs which significantly increase the film cooling effectiveness. However, engine scale AM builds have imperfections and roughness that can have a noticeable effect on performance. In this study, 9-9-3 shaped film cooling holes were constructed at engine scale using metal AM, specifically direct laser metal sintering (DMLS). These “as built” geometries were characterized through computerized tomography (CT) scans to quantify deviations from holes with design intent, or “as-designed” holes. To evaluate the performance of the “as-built” holes compared to “as-designed” holes, both adiabatic and overall cooling effectiveness were measured experimentally for 5x scale models. The larger scale enabled the use of finite deposition modeling (FDM) to construct hole geometry that closely matched the “as-designed” holes and the CT scans of the “as-built” holes. Two versions of the 9-9-3 hole were studied, the 9-9-3 rounded inlet (RI) hole with rounding at the inlet, and the 9-9-3 rounded inlet and exit (RIE) hole with additional rounding at the hole inlet, and rounding at the hole exit. Results showed that the adiabatic effectiveness and overall cooling effectiveness for the “as-built” holes were similar to the performance of the “as-designed” film cooling holes for both hole geometries tested.
UR - http://www.scopus.com/inward/record.url?scp=85141482934&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141482934&partnerID=8YFLogxK
U2 - 10.1115/GT2022-83201
DO - 10.1115/GT2022-83201
M3 - Conference contribution
AN - SCOPUS:85141482934
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer - Combustors; Film Cooling
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Y2 - 13 June 2022 through 17 June 2022
ER -