Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base

Landen Bowen, Kara Springsteen, Hannah Feldstein, Mary Frecker, Timothy W. Simpson, Paris von Lockette

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

Of special interest in the growing field of origami engineering is self-folding, wherein a material is able to fold itself in response to an applied field. In order to simulate the effect of active materials on an origami-inspired design, a dynamic model is needed. Ideally, the model would be an aid in determining how much active material is needed and where it should be placed to actuate the model to the desired position(s). A dynamic model of the origami waterbomb base, a well-known and foundational origami mechanism, is developed using ADAMS 2014, a commercial multibody dynamics software package. Creases are approximated as torsion springs with both stiffness and damping. The stiffness of an origami crease is calculated, and the dynamic model is verified using the waterbomb. An approximation of the torque produced by magneto-active elastomers (MAEs) is calculated and is used to simulate MAE-actuated self-folding of the waterbomb. Experimental validation of the self-folding waterbomb model is performed, verifying that the dynamic model is capable of accurate simulation of the fold angles.

Original languageEnglish (US)
Article number011010
JournalJournal of Mechanisms and Robotics
Volume7
Issue number1
DOIs
StatePublished - 2015

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base'. Together they form a unique fingerprint.

Cite this