Abstract
Understanding the strain-sensitivity of high temperature superconductors is important for the development of applications. Conductors for magnets experience mechanical loads during all stages of manufacturing and thermal cycling, as well as Lorentz force induced loads during operation. Thus, it is important to study the effects of mechanical loads on HTS conductors in the presence of magnetic field. Here we report on the development of a tensile testing device that was designed to characterize the in-field electromechanical behavior of HTS conductors. The device is capable of applying tension or compression, controlled fatigue cycles, and in-situ transport critical current measurements. We report on the development and capabilities of the device, as well as the initial stress-strain results at room temperature.
Original language | English (US) |
---|---|
Pages (from-to) | 3620-3623 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 15 |
Issue number | 2 PART III |
DOIs | |
State | Published - Jun 2005 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering