Abstract
An alumina ceramic 12.5 × 12.5 × 5.0 mm microreactor was constructed using a modified stereolith-ography process. The design was based on a "Swiss roll" concept of double spiral-shaped channels to facilitate a high level of heat transfer between the reactants and combustion products and wall surface contact of the flow through the microreactor body. Self-sustained combustion of hydrogen and air mixtures was demonstrated over a wide range of fuel/air mixtures and flow rates for equivalence ratios from 0.2 to 1.0 and chemical energy inputs from 2 to 16 W. Depositing platinum on gamma alumina on the internal walls enabled catalytic ignition at or near room temperature and self-sustained operation at temperatures to 300 °C. Catalyst degradation was observed at higher operating temperatures and reignition capabilities were lost. However, sustained operation could be obtained at wall temperatures in excess of 300 °C, apparently stabilized by a combination of surface and gas-phase reaction phenomena. A global energy balance model was developed to analyze overall reactor performance characteristics. The reactor design and operating temperature range have potential applications as a heat source for thermoelectric and pyroelectric power generation at small scales compatible with microelectromechanical systems applications.
Original language | English (US) |
---|---|
Pages (from-to) | 909-916 |
Number of pages | 8 |
Journal | Proceedings of the Combustion Institute |
Volume | 29 |
Issue number | 1 |
DOIs | |
State | Published - 2002 |
Event | 30th International Symposium on Combustion - Chicago, IL, United States Duration: Jul 25 2004 → Jul 30 2004 |
All Science Journal Classification (ASJC) codes
- General Chemical Engineering
- Mechanical Engineering
- Physical and Theoretical Chemistry