The aldehyde dehydrogenases (ALDH) are a major family of detoxifying enzymes that contribute to cancer progression and therapy resistance. ALDH overexpression is associated with a poor prognosis in many cancer types. The use of multi-ALDH isoform or isoform-specific ALDH inhibitors as anticancer agents is currently hindered by the lack of viable candidates. Most multi-ALDH isoform inhibitors lack bioavailability and are nonspecific or toxic, whereas most isoform-specific inhibitors are not effective as monotherapy due to the overlapping functions of ALDH family members. The present study details the development of a novel, potent, multi-isoform ALDH inhibitor, called KS100. The rationale for drug development was that inhibition of multiple ALDH isoforms might be more efficacious for cancer compared with isoform-specific inhibition. Enzymatic IC50s of KS100 were 207, 1,410, and 240 nmol/L toward ALDH1A1, 2, and 3A1, respectively. Toxicity of KS100 was mitigated by development of a nanoliposomal formulation, called NanoKS100. NanoKS100 had a loading efficiency of approximately 69% and was stable long-term. NanoKS100 was 5-fold more selective for killing melanoma cells compared with normal human fibroblasts. NanoKS100 administered intravenously at a submaximal dose (3-fold lower) was effective at inhibiting xenografted melanoma tumor growth by approximately 65% without organ-related toxicity. Mechanistically, inhibition by KS100 significantly reduced total cellular ALDH activity to increase reactive oxygen species generation, lipid peroxidation, and accumulation of toxic aldehydes leading to apoptosis and autophagy. Collectively, these data suggest the successful preclinical development of a nontoxic, bioavailable, nanoliposomal formulation containing a novel multi-ALDH isoform inhibitor effective in the treatment of cancer.

Original languageEnglish (US)
Pages (from-to)447-459
Number of pages13
JournalMolecular cancer therapeutics
Issue number2
StatePublished - Feb 1 2020

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research


Dive into the research topics of 'Development of a Novel Multi-Isoform ALDH Inhibitor Effective as an Antimelanoma Agent'. Together they form a unique fingerprint.

Cite this