TY - GEN
T1 - Development of a Parametric Modeling Method for Masonry Wall Systems to Support Robotic Construction
AU - McClymonds, Austin D.
AU - Asadi, Somayeh
AU - Leicht, Robert M.
N1 - Publisher Copyright:
© 2024 Computing in Civil Engineering 2023: Visualization, Information Modeling, and Simulation - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023. All rights reserved.
PY - 2024
Y1 - 2024
N2 - The construction industry has undergone a technological shift. Technology advancements have made robots a topic of discussion in construction. One challenge to overcome is how the robot receives information from designed BIM models. This study describes the methods employed for parametric modeling and generating model content of wall systems in Autodesk Revit added with a Dynamo script. Coordinates are determined for components based on model geometry and dimensions. Once generated, components are placed with the required material based on wall parameters. This research develops a method to add components based on wall materials from a traditionally modeled BIM extracting information such as location, object identifier (ID), type, and orientation which is formatted to transfer to the robot based on the needs of the robotic system as a list of tasks in a comma-separated values (.CSV) file. This study details the development process and early implementation of the Dynamo script.
AB - The construction industry has undergone a technological shift. Technology advancements have made robots a topic of discussion in construction. One challenge to overcome is how the robot receives information from designed BIM models. This study describes the methods employed for parametric modeling and generating model content of wall systems in Autodesk Revit added with a Dynamo script. Coordinates are determined for components based on model geometry and dimensions. Once generated, components are placed with the required material based on wall parameters. This research develops a method to add components based on wall materials from a traditionally modeled BIM extracting information such as location, object identifier (ID), type, and orientation which is formatted to transfer to the robot based on the needs of the robotic system as a list of tasks in a comma-separated values (.CSV) file. This study details the development process and early implementation of the Dynamo script.
UR - http://www.scopus.com/inward/record.url?scp=85184283824&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184283824&partnerID=8YFLogxK
U2 - 10.1061/9780784485231.048
DO - 10.1061/9780784485231.048
M3 - Conference contribution
AN - SCOPUS:85184283824
T3 - Computing in Civil Engineering 2023: Visualization, Information Modeling, and Simulation - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023
SP - 398
EP - 406
BT - Computing in Civil Engineering 2023
A2 - Turkan, Yelda
A2 - Louis, Joseph
A2 - Leite, Fernanda
A2 - Ergan, Semiha
PB - American Society of Civil Engineers (ASCE)
T2 - ASCE International Conference on Computing in Civil Engineering 2023: Visualization, Information Modeling, and Simulation, i3CE 2023
Y2 - 25 June 2023 through 28 June 2023
ER -