TY - GEN
T1 - Development of a Rigid Ring Quarter-Vehicle Model with an advanced road profile algorithm for durability and ride comfort predictions
AU - Allen, James
AU - El-Gindy, Moustafa
AU - Koudela, Kevin
PY - 2008/12/1
Y1 - 2008/12/1
N2 - In this paper a new five-degree-of-freedom in-plane Rigid Ring Quarter-Vehicle Model (RRQVM) with a Force Dependent Effective Road Profile (FDERP) is derived and programmed in MATLAB/Simulink©. This novel fully integrated model uses the tire-road vertical contact force to update the effective road height and slope at each integration time step. The model is capable of simulating the response of a free rolling tire over arbitrarily uneven road surfaces to studyvehicle ride comfort and durability with efficient, accurate results. The RRQVM is validated with tire spindle vertical acceleration data from virtual Finite Element Analysis (FEA) Quarter-Vehicle Model (QVM) tests. A baseline in-plane RRQVM with a Force Independent Effective Road Profile (FIERP) is also developed for comparison with the FDERP RRQVM. Results show that the FDERP RRQVM predicts the vertical tire spindle acceleration more accurately than the FIERP RRQVM when compared to the FEA RRQVM results, especially at speeds above 11 km/hr. Therefore, the advanced FDERP model provides the RRQVM with a more accurate effective road profile than a conventional FIERP model.
AB - In this paper a new five-degree-of-freedom in-plane Rigid Ring Quarter-Vehicle Model (RRQVM) with a Force Dependent Effective Road Profile (FDERP) is derived and programmed in MATLAB/Simulink©. This novel fully integrated model uses the tire-road vertical contact force to update the effective road height and slope at each integration time step. The model is capable of simulating the response of a free rolling tire over arbitrarily uneven road surfaces to studyvehicle ride comfort and durability with efficient, accurate results. The RRQVM is validated with tire spindle vertical acceleration data from virtual Finite Element Analysis (FEA) Quarter-Vehicle Model (QVM) tests. A baseline in-plane RRQVM with a Force Independent Effective Road Profile (FIERP) is also developed for comparison with the FDERP RRQVM. Results show that the FDERP RRQVM predicts the vertical tire spindle acceleration more accurately than the FIERP RRQVM when compared to the FEA RRQVM results, especially at speeds above 11 km/hr. Therefore, the advanced FDERP model provides the RRQVM with a more accurate effective road profile than a conventional FIERP model.
UR - http://www.scopus.com/inward/record.url?scp=81155154266&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81155154266&partnerID=8YFLogxK
U2 - 10.1115/DETC2008-49031
DO - 10.1115/DETC2008-49031
M3 - Conference contribution
AN - SCOPUS:81155154266
SN - 9780791843291
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 583
EP - 590
BT - ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2008
T2 - ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2008
Y2 - 3 August 2008 through 6 August 2008
ER -