TY - JOUR
T1 - Development of a robotic end-effector for apple tree pruning
AU - Zahid, A.
AU - He, L.
AU - Zeng, L.
AU - Choi, D.
AU - Schupp, J.
AU - Heinemann, P.
N1 - Publisher Copyright:
Copyright 2020 American Society of Agricultural and Biological Engineers.
PY - 2020
Y1 - 2020
N2 - Robotics and automation technologies are now used extensively in agriculture, while production operations for tree fruit crops still largely depend on manual labor. Manual pruning is a labor-intensive and costly task in apple production. Robotic pruning is a potential solution, but it involves several challenges due to the unstructured work environment. This study focused on designing an end-effector prototype for pruning considering the maneuvering, spatial, mechanical, and horticultural requirements. Branch cutting force was measured with a thin force sensor to provide guidelines for the end-effector design. The test results indicated the relationship between the force required to cut different diameter branches with an R2 value of 0.93. The end-effector was developed using two rotary motors, a pneumatic cylinder, and a pair of bypass shear blades. A three-directional linear manipulator system and a control system were built for moving the end-effector to targeted locations. A mathematical model was developed for simulation of the workspace utilization and reachable points of the end-effector. The simulation results indicated that the end-effector can be aligned in a wide range of orientations of the cutter. Field tests were conducted for validation of the simulation results and performance assessment of the end-effector. The results indicated that the end-effector with the current parameter settings successfully cut branches up to 12 mm in diameter and was able to cut branches in a wide range of possible orientations in a given 3D space. The robotic end-effector developed in this study is a core component of an automated pruning system for fruit trees. In future work, an integrated manipulator system will be developed for branch accessibility with collision-free trajectories.
AB - Robotics and automation technologies are now used extensively in agriculture, while production operations for tree fruit crops still largely depend on manual labor. Manual pruning is a labor-intensive and costly task in apple production. Robotic pruning is a potential solution, but it involves several challenges due to the unstructured work environment. This study focused on designing an end-effector prototype for pruning considering the maneuvering, spatial, mechanical, and horticultural requirements. Branch cutting force was measured with a thin force sensor to provide guidelines for the end-effector design. The test results indicated the relationship between the force required to cut different diameter branches with an R2 value of 0.93. The end-effector was developed using two rotary motors, a pneumatic cylinder, and a pair of bypass shear blades. A three-directional linear manipulator system and a control system were built for moving the end-effector to targeted locations. A mathematical model was developed for simulation of the workspace utilization and reachable points of the end-effector. The simulation results indicated that the end-effector can be aligned in a wide range of orientations of the cutter. Field tests were conducted for validation of the simulation results and performance assessment of the end-effector. The results indicated that the end-effector with the current parameter settings successfully cut branches up to 12 mm in diameter and was able to cut branches in a wide range of possible orientations in a given 3D space. The robotic end-effector developed in this study is a core component of an automated pruning system for fruit trees. In future work, an integrated manipulator system will be developed for branch accessibility with collision-free trajectories.
UR - http://www.scopus.com/inward/record.url?scp=85091109878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091109878&partnerID=8YFLogxK
U2 - 10.13031/TRANS.13729
DO - 10.13031/TRANS.13729
M3 - Article
AN - SCOPUS:85091109878
SN - 2151-0032
VL - 63
SP - 847
EP - 856
JO - Transactions of the ASABE
JF - Transactions of the ASABE
IS - 4
ER -