Abstract
The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO= 15.3 % and CL s= 53.3 % for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δCP and obtained from energies Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
Original language | English (US) |
---|---|
Article number | 9 |
Journal | European Physical Journal C |
Volume | 80 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2020 |
All Science Journal Classification (ASJC) codes
- Engineering (miscellaneous)
- Physics and Astronomy (miscellaneous)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data: IceCube Collaboration'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: European Physical Journal C, Vol. 80, No. 1, 9, 01.01.2020.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data
T2 - IceCube Collaboration
AU - Aartsen, M. G.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Alispach, C.
AU - Andeen, K.
AU - Anderson, T.
AU - Ansseau, I.
AU - Anton, G.
AU - Argüelles, C.
AU - Auffenberg, J.
AU - Axani, S.
AU - Backes, P.
AU - Bagherpour, H.
AU - Bai, X.
AU - Barbano, A.
AU - Barwick, S. W.
AU - Baum, V.
AU - Bay, R.
AU - Beatty, J. J.
AU - Becker, K. H.
AU - Tjus, J. Becker
AU - BenZvi, S.
AU - Berley, D.
AU - Bernardini, E.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Blaufuss, E.
AU - Blot, S.
AU - Bohm, C.
AU - Börner, M.
AU - Böser, S.
AU - Botner, O.
AU - Bourbeau, E.
AU - Bourbeau, J.
AU - Bradascio, F.
AU - Braun, J.
AU - Bretz, H. P.
AU - Bron, S.
AU - Brostean-Kaiser, J.
AU - Burgman, A.
AU - Busse, R. S.
AU - Carver, T.
AU - Chen, C.
AU - Cheung, E.
AU - Chirkin, D.
AU - Clark, K.
AU - Classen, L.
AU - Collin, G. H.
AU - Conrad, J. M.
AU - Coppin, P.
AU - Correa, P.
AU - Cowen, D. F.
AU - Cross, R.
AU - Dave, P.
AU - de André, J. P.A.M.
AU - De Clercq, C.
AU - DeLaunay, J. J.
AU - Dembinski, H.
AU - Deoskar, K.
AU - De Ridder, S.
AU - Desiati, P.
AU - de Vries, K. D.
AU - de Wasseige, G.
AU - de With, M.
AU - DeYoung, T.
AU - Diaz, A.
AU - Díaz-Vélez, J. C.
AU - Dujmovic, H.
AU - Dunkman, M.
AU - Dvorak, E.
AU - Eberhardt, B.
AU - Ehrhardt, T.
AU - Eichmann, B.
AU - Eller, P.
AU - Evans, J. J.
AU - Evenson, P. A.
AU - Fahey, S.
AU - Fazely, A. R.
AU - Felde, J.
AU - Filimonov, K.
AU - Finley, C.
AU - Franckowiak, A.
AU - Friedman, E.
AU - Fritz, A.
AU - Gaisser, T. K.
AU - Gallagher, J.
AU - Ganster, E.
AU - Garrappa, S.
AU - Gerhardt, L.
AU - Ghorbani, K.
AU - Glauch, T.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Gonzalez, J. G.
AU - Grant, D.
AU - Griffith, Z.
AU - Günder, M.
AU - Gündüz, M.
AU - Haack, C.
AU - Hallgren, A.
AU - Halve, L.
AU - Halzen, F.
AU - Hanson, K.
AU - Hebecker, D.
AU - Heereman, D.
AU - Helbing, K.
AU - Hellauer, R.
AU - Henningsen, F.
AU - Hickford, S.
AU - Hignight, J.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Hoinka, T.
AU - Hokanson-Fasig, B.
AU - Hoshina, K.
AU - Huang, F.
AU - Huber, M.
AU - Hultqvist, K.
AU - Hünnefeld, M.
AU - Hussain, R.
AU - In, S.
AU - Iovine, N.
AU - Ishihara, A.
AU - Jacobi, E.
AU - Japaridze, G. S.
AU - Jeong, M.
AU - Jero, K.
AU - Jones, B. J.P.
AU - Kang, W.
AU - Kappes, A.
AU - Kappesser, D.
AU - Karg, T.
AU - Karl, M.
AU - Karle, A.
AU - Katz, U.
AU - Kauer, M.
AU - Kelley, J. L.
AU - Kheirandish, A.
AU - Kim, J.
AU - Kintscher, T.
AU - Kiryluk, J.
AU - Kittler, T.
AU - Klein, S. R.
AU - Koirala, R.
AU - Kolanoski, H.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Krings, K.
AU - Krückl, G.
AU - Kulacz, N.
AU - Kunwar, S.
AU - Kurahashi, N.
AU - Kyriacou, A.
AU - Labare, M.
AU - Lanfranchi, J. L.
AU - Larson, M. J.
AU - Lauber, F.
AU - Lazar, J. P.
AU - Leonard, K.
AU - Leuermann, M.
AU - Liu, Q. R.
AU - Lohfink, E.
AU - Lozano Mariscal, C. J.
AU - Lu, L.
AU - Lucarelli, F.
AU - Lünemann, J.
AU - Luszczak, W.
AU - Madsen, J.
AU - Maggi, G.
AU - Mahn, K. B.M.
AU - Makino, Y.
AU - Mallot, K.
AU - Mancina, S.
AU - Mariş, I. C.
AU - Maruyama, R.
AU - Mase, K.
AU - Maunu, R.
AU - Meagher, K.
AU - Medici, M.
AU - Medina, A.
AU - Meier, M.
AU - Meighen-Berger, S.
AU - Menne, T.
AU - Merino, G.
AU - Meures, T.
AU - Miarecki, S.
AU - Micallef, J.
AU - Momenté, G.
AU - Montaruli, T.
AU - Moore, R. W.
AU - Moulai, M.
AU - Nagai, R.
AU - Nahnhauer, R.
AU - Nakarmi, P.
AU - Naumann, U.
AU - Neer, G.
AU - Niederhausen, H.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Pollmann, A. Obertacke
AU - Olivas, A.
AU - O’Murchadha, A.
AU - O’Sullivan, E.
AU - Palczewski, T.
AU - Pandya, H.
AU - Pankova, D. V.
AU - Park, N.
AU - Peiffer, P.
AU - de los Heros, C. Pérez
AU - Pieloth, D.
AU - Pinat, E.
AU - Pizzuto, A.
AU - Plum, M.
AU - Price, P. B.
AU - Przybylski, G. T.
AU - Raab, C.
AU - Raissi, A.
AU - Rameez, M.
AU - Rauch, L.
AU - Rawlins, K.
AU - Rea, I. C.
AU - Reimann, R.
AU - Relethford, B.
AU - Renzi, G.
AU - Resconi, E.
AU - Rhode, W.
AU - Richman, M.
AU - Robertson, S.
AU - Rongen, M.
AU - Rott, C.
AU - Ruhe, T.
AU - Ryckbosch, D.
AU - Rysewyk, D.
AU - Safa, I.
AU - Herrera, S. E.Sanchez
AU - Sandrock, A.
AU - Sandroos, J.
AU - Santander, M.
AU - Sarkar, S.
AU - Satalecka, K.
AU - Schaufel, M.
AU - Schlunder, P.
AU - Schmidt, T.
AU - Schneider, A.
AU - Schneider, J.
AU - Schumacher, L.
AU - Sclafani, S.
AU - Seckel, D.
AU - Seunarine, S.
AU - Silva, M.
AU - Snihur, R.
AU - Soedingrekso, J.
AU - Soldin, D.
AU - Söldner-Rembold, S.
AU - Song, M.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stachurska, J.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stasik, A.
AU - Stein, R.
AU - Stettner, J.
AU - Steuer, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stößl, A.
AU - Strotjohann, N. L.
AU - Stuttard, T.
AU - Sullivan, G. W.
AU - Sutherland, M.
AU - Taboada, I.
AU - Tenholt, F.
AU - Ter-Antonyan, S.
AU - Terliuk, A.
AU - Tilav, S.
AU - Tomankova, L.
AU - Tönnis, C.
AU - Toscano, S.
AU - Tosi, D.
AU - Tselengidou, M.
AU - Tung, C. F.
AU - Turcati, A.
AU - Turcotte, R.
AU - Turley, C. F.
AU - Ty, B.
AU - Unger, E.
AU - Unland Elorrieta, M. A.
AU - Usner, M.
AU - Vandenbroucke, J.
AU - Van Driessche, W.
AU - van Eijk, D.
AU - van Eijndhoven, N.
AU - Vanheule, S.
AU - van Santen, J.
AU - Vraeghe, M.
AU - Walck, C.
AU - Wallace, A.
AU - Wallraff, M.
AU - Wandkowsky, N.
AU - Watson, T. B.
AU - Weaver, C.
AU - Weiss, M. J.
AU - Weldert, J.
AU - Wendt, C.
AU - Werthebach, J.
AU - Westerhoff, S.
AU - Whelan, B. J.
AU - Whitehorn, N.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Wille, L.
AU - Williams, D. R.
AU - Wills, L.
AU - Wolf, M.
AU - Wood, J.
AU - Wood, T. R.
AU - Woschnagg, K.
AU - Wrede, G.
AU - Wren, S.
AU - Xu, D. L.
AU - Xu, X. W.
AU - Xu, Y.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Yuan, T.
N1 - Funding Information: USA – U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium – Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany – Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden – Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia – Australian Research Council; Canada – Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark – Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand – Marsden Fund; Japan – Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea – National Research Foundation of Korea (NRF); Switzerland – Swiss National Science Foundation (SNSF); UK – Science and Technology Facilities Council (STFC), part of UK Research and Innovation. The IceCube collaboration acknowledges the significant contributions to this manuscript from Martin Leuermann and Steven Wren. Funding Information: USA ? U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium ? Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany ? Bundesministerium f?r Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden ? Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia ? Australian Research Council; Canada ? Natural Sciences and Engineering Research Council of Canada, Calcul Qu?bec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark ? Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand ? Marsden Fund; Japan ? Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea ? National Research Foundation of Korea (NRF); Switzerland ? Swiss National Science Foundation (SNSF); UK ? Science and Technology Facilities Council (STFC), part of UK Research and Innovation. The IceCube collaboration acknowledges the significant contributions to this manuscript from Martin Leuermann and Steven Wren. Publisher Copyright: © 2020, The Author(s).
PY - 2020/1/1
Y1 - 2020/1/1
N2 - The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO= 15.3 % and CL s= 53.3 % for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δCP and obtained from energies Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
AB - The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO= 15.3 % and CL s= 53.3 % for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δCP and obtained from energies Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
UR - http://www.scopus.com/inward/record.url?scp=85077376043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077376043&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-019-7555-0
DO - 10.1140/epjc/s10052-019-7555-0
M3 - Article
AN - SCOPUS:85077376043
SN - 1434-6044
VL - 80
JO - European Physical Journal C
JF - European Physical Journal C
IS - 1
M1 - 9
ER -