Development of an unsteady aerodynamic model for upstream miniature trailing-edge effectors

Bernardo A.O. Vieira, James G. Coder, Mark D. Maughmer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The development and validation of an aerodynamic model for predicting the unsteady lift response of upstream miniature trailing-edge effectors (MiTEs) is detailed. MiTEs are active Gurney flaps that show potential for use in rotorcraft performance enhancement, vibration control, and noise control if they can be stored within the blade itself. This usually requires the MiTEs to be placed upstream of the blade trailing edge. OVERFLOW 2.1 predictions demonstrate the formation and convection of an unsteady vortex immediately following MiTE deployment. These vortices introduce non-harmonic components in the unsteady aerodynamic response. A computationally-inexpensive model has been developed based on CFD results, which extends work previously done for trailing-edge MiTEs by accounting for the vortex effect. The approach is physics-based in order to minimize the number of constants and increase the model's generality. Predictions from the unsteady lift model are compared with CFD and experiments for different airfoils, MiTE deployment schedules, and different Mach numbers. Based on these comparisons, the model is capable of predicting the aerodynamic behavior of MiTEs for all of their potential applications to rotorcraft.

Original languageEnglish (US)
Title of host publication67th American Helicopter Society International Annual Forum 2011
Pages281-297
Number of pages17
StatePublished - 2011
Event67th American Helicopter Society International Annual Forum 2011 - Virginia Beach, VA, United States
Duration: May 3 2011May 5 2011

Publication series

NameAnnual Forum Proceedings - AHS International
Volume1
ISSN (Print)1552-2938

Other

Other67th American Helicopter Society International Annual Forum 2011
Country/TerritoryUnited States
CityVirginia Beach, VA
Period5/3/115/5/11

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Development of an unsteady aerodynamic model for upstream miniature trailing-edge effectors'. Together they form a unique fingerprint.

Cite this