Development of La(CrCoFeNi)O3 system perovskites as interconnect and cathode materials for solid oxide fuel cells

Abhigna Kolisetty, Zhezhen Fu, Rasit Koc

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The purpose of this research is to develop interconnect and cathode materials for use in solid oxide fuel cells (SOFCs) which demonstrate desired properties of outstanding sintering properties, high electrical conductivity, and excellent chemical stability at high temperatures. Five different perovskite oxides of lanthanum in combination with chromium, iron, cobalt and nickel oxides powders, i.e. LaCr0.7Co0.1Fe0.1Ni0.1O3(LCr7CFN), LaCo0.7Cr0.1Fe0.1 Ni0.1O3(LCo7CFN), LaFe0.7Cr0.1Co0.1Ni0.1O3(LFe7CCN), LaNi0.7Cr0.1Co0.1Fe0.1O3(LNi7CCF), and LaCr0.25Co0.25Fe0.25Ni0.25O3(LCCFN), were synthesized through the Pechini method. XRD results show that all materials are in single phase, either rhombohedral or orthorhombic crystal structure. The resulting powders were able to be sintered to a high relative density at a temperature of 1400 °C for 2 h in air. The electrical conductivity of the sintered sample was measured and evaluated from 300 °C to 800 °C. The LCCFN sample appears to have the best combination of sintering property (approximate 94% relative density) and electrical conductivity (88.13 Scm−1 at 800 °C).

Original languageEnglish (US)
Pages (from-to)7647-7652
Number of pages6
JournalCeramics International
Volume43
Issue number10
DOIs
StatePublished - Jul 1 2017

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Process Chemistry and Technology
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Development of La(CrCoFeNi)O3 system perovskites as interconnect and cathode materials for solid oxide fuel cells'. Together they form a unique fingerprint.

Cite this