Abstract
Soil P saturation affects the risk of P loss to surface and ground water and is therefore a critical environmental indicator in regions where eutrophication is a concern. In the USA, most soil testing laboratories do not include environmental indicators such as soil P saturation as standard soil test options. Development of pedotransfer functions that relate soil test data to soil P saturation, however, would enable soil testing laboratories to estimate soil P saturation as part of soil test results without significant additional expenditures. This study examines associations between readily-available soil test data (pH, soil organic matter, and extractable P, Al, Fe, and Ca) and soil P saturation as estimated by acid ammonium oxalate extraction. Fifty-nine soil samples were collected from the Delaware River Watershed in New York State (42°21′N, 74°52′W) and subjected to standard soil test analyses as well as to acid ammonium oxalate extraction. Some soil test variables were well correlated with soil P saturation. As a single predictor, soil test P was most highly correlated to soil P saturation (r = 0.88). This association supports the use of soil test P as an environmental indicator. Soil test Al also was well correlated with soil P saturation following logarithmic transformation (r = 0.73). Multivariate pedotransfer functions containing soil test P, Al, Fe, soil organic matter, and pH did not significantly improve estimation of soil P saturation (R = 0.91) above soil test P alone.
Original language | English (US) |
---|---|
Pages (from-to) | 2026-2030 |
Number of pages | 5 |
Journal | Journal of Environmental Quality |
Volume | 28 |
Issue number | 6 |
DOIs | |
State | Published - 1999 |
All Science Journal Classification (ASJC) codes
- Environmental Engineering
- Water Science and Technology
- Waste Management and Disposal
- Pollution
- Management, Monitoring, Policy and Law