TY - JOUR
T1 - DFT insights into the adsorption mechanisms of lithium polysulfides on Ni2P (0001) surface for lithium–sulfur batteries
AU - Amaral, Ricardo
AU - Dzade, Nelson Y.
N1 - Publisher Copyright:
© 2024
PY - 2024/6/30
Y1 - 2024/6/30
N2 - Reliable and sustainable energy storage systems are crucial for a renewable energy future. The ultrahigh theoretical specific capacity and energy density of lithium–sulfur batteries (LSBs) make them one of the most promising next-generation battery technologies. However, their large-scale applications are seriously limited by rapid capacity fading and poor Coulombic efficiency owing to the shuttling of lithium polysulfides (LiPSs). Herein, we investigate nickel phosphide (Ni2P) as an effective host material to realize high-performance LSBs based on first-principles density functional theory (DFT) calculations. Our calculated adsorption energies of the LiPSs species reveal that the Ni2P(0001) surface possesses moderate to high adsorption strength and the adsorption process is facilitated via charge transfer from the LiPSs to the interacting Ni2P(0001) surface atoms. Due to the strong interactions between Ni2P(0001) and LiPSs (Li2Sx, x = 1, 2, 4, 6 and 8), we observe elongation of the intramolecular Li–S bonds in LiPSs upon their adsorption. The stronger adsorption of Li2S coupled with its spontaneous dissociation suggests a faster charging process could occur on the on Ni2P(0001) surface. These results demonstrate that Ni2P can provide effective anchoring sites for the soluble LiPSs, potentially having implications for the design of electrodes for practical LSBs.
AB - Reliable and sustainable energy storage systems are crucial for a renewable energy future. The ultrahigh theoretical specific capacity and energy density of lithium–sulfur batteries (LSBs) make them one of the most promising next-generation battery technologies. However, their large-scale applications are seriously limited by rapid capacity fading and poor Coulombic efficiency owing to the shuttling of lithium polysulfides (LiPSs). Herein, we investigate nickel phosphide (Ni2P) as an effective host material to realize high-performance LSBs based on first-principles density functional theory (DFT) calculations. Our calculated adsorption energies of the LiPSs species reveal that the Ni2P(0001) surface possesses moderate to high adsorption strength and the adsorption process is facilitated via charge transfer from the LiPSs to the interacting Ni2P(0001) surface atoms. Due to the strong interactions between Ni2P(0001) and LiPSs (Li2Sx, x = 1, 2, 4, 6 and 8), we observe elongation of the intramolecular Li–S bonds in LiPSs upon their adsorption. The stronger adsorption of Li2S coupled with its spontaneous dissociation suggests a faster charging process could occur on the on Ni2P(0001) surface. These results demonstrate that Ni2P can provide effective anchoring sites for the soluble LiPSs, potentially having implications for the design of electrodes for practical LSBs.
UR - http://www.scopus.com/inward/record.url?scp=85188544392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85188544392&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2024.159847
DO - 10.1016/j.apsusc.2024.159847
M3 - Article
AN - SCOPUS:85188544392
SN - 0169-4332
VL - 659
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 159847
ER -