TY - JOUR
T1 - dGPredictor
T2 - Automated fragmentation method for metabolic reaction free energy prediction and de novo pathway design
AU - Wang, Lin
AU - Upadhyay, Vikas
AU - Maranas, Costas D.
N1 - Publisher Copyright:
Copyright: © 2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/9
Y1 - 2021/9
N2 - Group contribution (GC) methods are conventionally used in thermodynamics analysis of metabolic pathways to estimate the standard Gibbs energy change (ΔrG0o) of enzymatic reactions from limited experimental measurements. However, these methods are limited by their dependence on manually curated groups and inability to capture stereochemical information, leading to low reaction coverage. Herein, we introduce an automated molecular fingerprint-based thermodynamic analysis tool called dGPredictor that enables the consideration of stereochemistry within metabolite structures and thus increases reaction coverage. dGPredictor has comparable prediction accuracy compared to existing GC methods and can capture Gibbs energy changes for isomerase and transferase reactions, which exhibit no overall group changes. We also demonstrate dGPredictor’s ability to predict the Gibbs energy change for novel reactions and seamless integration within de novo metabolic pathway design tools such as novoStoic for safeguarding against the inclusion of reaction steps with infeasible directionalities. To facilitate easy access to dGPredictor, we developed a graphical user interface to predict the standard Gibbs energy change for reactions at various pH and ionic strengths. The tool allows customized user input of known metabolites as KEGG IDs and novel metabolites as InChI strings (https://github.com/maranasgroup/dGPredictor).
AB - Group contribution (GC) methods are conventionally used in thermodynamics analysis of metabolic pathways to estimate the standard Gibbs energy change (ΔrG0o) of enzymatic reactions from limited experimental measurements. However, these methods are limited by their dependence on manually curated groups and inability to capture stereochemical information, leading to low reaction coverage. Herein, we introduce an automated molecular fingerprint-based thermodynamic analysis tool called dGPredictor that enables the consideration of stereochemistry within metabolite structures and thus increases reaction coverage. dGPredictor has comparable prediction accuracy compared to existing GC methods and can capture Gibbs energy changes for isomerase and transferase reactions, which exhibit no overall group changes. We also demonstrate dGPredictor’s ability to predict the Gibbs energy change for novel reactions and seamless integration within de novo metabolic pathway design tools such as novoStoic for safeguarding against the inclusion of reaction steps with infeasible directionalities. To facilitate easy access to dGPredictor, we developed a graphical user interface to predict the standard Gibbs energy change for reactions at various pH and ionic strengths. The tool allows customized user input of known metabolites as KEGG IDs and novel metabolites as InChI strings (https://github.com/maranasgroup/dGPredictor).
UR - http://www.scopus.com/inward/record.url?scp=85116945998&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116945998&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1009448
DO - 10.1371/journal.pcbi.1009448
M3 - Article
C2 - 34570771
AN - SCOPUS:85116945998
SN - 1553-734X
VL - 17
JO - PLoS computational biology
JF - PLoS computational biology
IS - 9
M1 - e1009448
ER -