TY - GEN
T1 - Dielectric properties of dielectrophoretically aligned ZNO-PDMS composites
AU - Al Masud, Md Abdulla
AU - Ounaies, Zoubeida
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - ZnO based polymer composite materials are of great interest because of their excellent electrical, optical, semiconductor and biocompatible properties. In this study, we synthesize anisotropic composites of aligned ZnO rods in polydimethylsiloxane (PDMS) elastomer and study their dielectric properties as a function of applied electric field and frequency. Submicron ZnO rods are synthesized using an inexpensive, high yield chemical route. Washed and purified ZnO rods are then aligned in uncured PDMS at different electric field and frequency. We find that under electric field, ZnO rotates with their long axis in the direction of the electric field and before coalescing form chains in the silicone elastomer. From the optical microscopy images and in situ dielectric measurements, the best alignment parameters are found at 4 kV/mm and 10 kHz. These conditions are then selected to prepare aligned ZnO-PDMS composites. Complete curing of composites is confirmed using dynamic mechanical analysis (DMA). Our results show that aligned ZnO in uncured PDMS exhibit higher dielectric permittivity compared to random dispersion with the same composition. For the cured ZnO-PDMS composites, dielectric permittivity increases by 80% compared to random composites.
AB - ZnO based polymer composite materials are of great interest because of their excellent electrical, optical, semiconductor and biocompatible properties. In this study, we synthesize anisotropic composites of aligned ZnO rods in polydimethylsiloxane (PDMS) elastomer and study their dielectric properties as a function of applied electric field and frequency. Submicron ZnO rods are synthesized using an inexpensive, high yield chemical route. Washed and purified ZnO rods are then aligned in uncured PDMS at different electric field and frequency. We find that under electric field, ZnO rotates with their long axis in the direction of the electric field and before coalescing form chains in the silicone elastomer. From the optical microscopy images and in situ dielectric measurements, the best alignment parameters are found at 4 kV/mm and 10 kHz. These conditions are then selected to prepare aligned ZnO-PDMS composites. Complete curing of composites is confirmed using dynamic mechanical analysis (DMA). Our results show that aligned ZnO in uncured PDMS exhibit higher dielectric permittivity compared to random dispersion with the same composition. For the cured ZnO-PDMS composites, dielectric permittivity increases by 80% compared to random composites.
UR - http://www.scopus.com/inward/record.url?scp=85013956765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013956765&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2016-9128
DO - 10.1115/SMASIS2016-9128
M3 - Conference contribution
AN - SCOPUS:85013956765
T3 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
BT - Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Y2 - 28 September 2016 through 30 September 2016
ER -