TY - JOUR
T1 - Differences in surface failure modes of soda lime silica glass under normal indentation versus tangential shear
T2 - A comparative study on Na+/K+-ion exchange effects
AU - Luo, Jiawei
AU - Grisales, William
AU - Rabii, Matthew
AU - Pantano, Carlo G.
AU - Kim, Seong H.
N1 - Publisher Copyright:
© 2018 The American Ceramic Society
PY - 2019/4
Y1 - 2019/4
N2 - The effects of exchanging Na+ with K+ on the mechanical and mechanochemical properties of a soda lime silica (SLS) glass were investigated. It is known that replacing smaller modifier ions with bigger ions in the silicate glass network, at temperatures below the glass transition (Tg), produces a compressive stress in the subsurface region that enhances resistance to mechanical damages. This study found that when Na+ ions in SLS are exchanged with K+ ions at 400°C, the hardness, indentation fracture toughness, and crack initiation load of the surface are increased, which is consistent with the chemical strengthening effect. However, the resistance to mechanochemical wear in a near-saturation humidity condition (relative humidity RH = 90%) is deteriorated. When K+ ions are exchanged back with Na+ ions at 350°C, the wear resistance in high humidity conditions is recovered. These results indicate that the improvement of mechanical properties under indentation normal to the surface is irrelevant with the resistance to mechanochemical wear under tangential shear at the surface. Based on the analysis of the surface chemical composition, silicate network structure, and hydrogen-bonding interactions of hydrous species in the subsurface region, it is proposed that the leachable Na+ associated with non-bridging oxygen and subsurface hydrous species in the silicate network play more important roles in the mechanochemical wear of SLS at high RH.
AB - The effects of exchanging Na+ with K+ on the mechanical and mechanochemical properties of a soda lime silica (SLS) glass were investigated. It is known that replacing smaller modifier ions with bigger ions in the silicate glass network, at temperatures below the glass transition (Tg), produces a compressive stress in the subsurface region that enhances resistance to mechanical damages. This study found that when Na+ ions in SLS are exchanged with K+ ions at 400°C, the hardness, indentation fracture toughness, and crack initiation load of the surface are increased, which is consistent with the chemical strengthening effect. However, the resistance to mechanochemical wear in a near-saturation humidity condition (relative humidity RH = 90%) is deteriorated. When K+ ions are exchanged back with Na+ ions at 350°C, the wear resistance in high humidity conditions is recovered. These results indicate that the improvement of mechanical properties under indentation normal to the surface is irrelevant with the resistance to mechanochemical wear under tangential shear at the surface. Based on the analysis of the surface chemical composition, silicate network structure, and hydrogen-bonding interactions of hydrous species in the subsurface region, it is proposed that the leachable Na+ associated with non-bridging oxygen and subsurface hydrous species in the silicate network play more important roles in the mechanochemical wear of SLS at high RH.
UR - http://www.scopus.com/inward/record.url?scp=85053421045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053421045&partnerID=8YFLogxK
U2 - 10.1111/jace.16019
DO - 10.1111/jace.16019
M3 - Article
AN - SCOPUS:85053421045
SN - 0002-7820
VL - 102
SP - 1665
EP - 1676
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 4
ER -