TY - JOUR
T1 - Different mechanisms for the photoinduced production of oxidative dna damage by fluoroquinolones differing in photostability
AU - Spratt, Thomas E.
AU - Schultz, Sherri S.
AU - Levy, Douglas E.
AU - Chen, Di
AU - Schlüter, Gerhardt
AU - Williams, Gary M.
PY - 1999
Y1 - 1999
N2 - Several fluoroquinolone antibacterial agents exhibit an adverse phototoxic effect in humans and are photo-cocarcinogenic in mice. The UV- induced production of reactive oxygen species plays a role in the toxicity and may be involved in carcinogenicity. Four fluoroquinolones were examined for the ability to photochemically produce oxidative damage in naked DNA. The major structural difference in the fluoroquinolones that would have an effect on their photostability is the functionality at the 8-position. At this position, 1-cyclopropyl-7-(2,8-diazbicyclo[4.3.0]non-8-yl)-6,8-difluoro-1,4- dihydro-4-oxo-3-quinolinecarboxylic acid (BAY y3118) contains a chlorine atom, lomefloxacin a fluorine atom, ciprofloxacin a proton, and moxifloxacin a methoxy group. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8- oxodGuo) in calf thymus DNA was assessed by HPLC with electrochemical detection, and strand breaks were measured in pBR322 with agarose gel electrophoresis. The relative photolability of the fluoroquinolones correlated to the extent of production of 8-oxodGuo and strand breaks, with both UVA and UVB irradiation, in the following order: BAY y3118 ~ lomefloxacin > ciprofloxacin > moxifloxacin. Experiments were performed to determine whether the mechanism of damage was due to a type I (radical) or type II (singlet oxygen) pathway. Nitrogen depletion of oxygen resulted in a decrease in the extent of formation of 8-oxodGuo, suggesting that oxygen was involved. The use of selective radical or singlet oxygen inhibitors was inconclusive with respect to which pathway was involved. The use of D2O as a solvent, which would extend the lifetime of singlet oxygen, suggested that this species is involved in the formation of 8-oxodGuo by moxifloxacin and ciprofloxacin, but not by lomefloxacin and BAY y3118. Similarly, it was found that singlet oxygen was not involved in strand break formation. Thus, the evidence suggests that fluoroquinolones can photochemically produce DNA damage by both type I and type II mechanisms.
AB - Several fluoroquinolone antibacterial agents exhibit an adverse phototoxic effect in humans and are photo-cocarcinogenic in mice. The UV- induced production of reactive oxygen species plays a role in the toxicity and may be involved in carcinogenicity. Four fluoroquinolones were examined for the ability to photochemically produce oxidative damage in naked DNA. The major structural difference in the fluoroquinolones that would have an effect on their photostability is the functionality at the 8-position. At this position, 1-cyclopropyl-7-(2,8-diazbicyclo[4.3.0]non-8-yl)-6,8-difluoro-1,4- dihydro-4-oxo-3-quinolinecarboxylic acid (BAY y3118) contains a chlorine atom, lomefloxacin a fluorine atom, ciprofloxacin a proton, and moxifloxacin a methoxy group. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8- oxodGuo) in calf thymus DNA was assessed by HPLC with electrochemical detection, and strand breaks were measured in pBR322 with agarose gel electrophoresis. The relative photolability of the fluoroquinolones correlated to the extent of production of 8-oxodGuo and strand breaks, with both UVA and UVB irradiation, in the following order: BAY y3118 ~ lomefloxacin > ciprofloxacin > moxifloxacin. Experiments were performed to determine whether the mechanism of damage was due to a type I (radical) or type II (singlet oxygen) pathway. Nitrogen depletion of oxygen resulted in a decrease in the extent of formation of 8-oxodGuo, suggesting that oxygen was involved. The use of selective radical or singlet oxygen inhibitors was inconclusive with respect to which pathway was involved. The use of D2O as a solvent, which would extend the lifetime of singlet oxygen, suggested that this species is involved in the formation of 8-oxodGuo by moxifloxacin and ciprofloxacin, but not by lomefloxacin and BAY y3118. Similarly, it was found that singlet oxygen was not involved in strand break formation. Thus, the evidence suggests that fluoroquinolones can photochemically produce DNA damage by both type I and type II mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=0032824922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032824922&partnerID=8YFLogxK
U2 - 10.1021/tx980224j
DO - 10.1021/tx980224j
M3 - Article
C2 - 10490502
AN - SCOPUS:0032824922
SN - 0893-228X
VL - 12
SP - 809
EP - 815
JO - Chemical research in toxicology
JF - Chemical research in toxicology
IS - 9
ER -