TY - GEN
T1 - Differentiable Rendering for Pose Estimation in Proximity Operations
AU - Bhaskara, Ramchander Rao
AU - Eapen, Roshan Thomas
AU - Majji, Manoranjan
N1 - Publisher Copyright:
© 2023, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Differentiable rendering aims to compute the derivative of the image rendering function with respect to the rendering parameters. This paper presents a novel algorithm for 6-DoF pose estimation through gradient-based optimization using a differentiable rendering pipeline. We emphasize two key contributions: (1) instead of solving the conventional 2D to 3D correspondence problem and computing reprojection errors, images (rendered using the 3D model) are compared only in the 2D feature space via sparse 2D feature correspondences. (2) Instead of an analytical image formation model, we compute an approximate local gradient of the rendering process through online learning. The learning data consists of image features extracted from multi-viewpoint renders at small perturbations in the pose neighborhood. The gradients are propagated through the rendering pipeline for the 6-DoF pose estimation using nonlinear least squares. This gradient-based optimization regresses directly upon the pose parameters by aligning the 3D model to reproduce a reference image shape. Using representative experiments, we demonstrate the application of our approach to pose estimation in proximity operations.
AB - Differentiable rendering aims to compute the derivative of the image rendering function with respect to the rendering parameters. This paper presents a novel algorithm for 6-DoF pose estimation through gradient-based optimization using a differentiable rendering pipeline. We emphasize two key contributions: (1) instead of solving the conventional 2D to 3D correspondence problem and computing reprojection errors, images (rendered using the 3D model) are compared only in the 2D feature space via sparse 2D feature correspondences. (2) Instead of an analytical image formation model, we compute an approximate local gradient of the rendering process through online learning. The learning data consists of image features extracted from multi-viewpoint renders at small perturbations in the pose neighborhood. The gradients are propagated through the rendering pipeline for the 6-DoF pose estimation using nonlinear least squares. This gradient-based optimization regresses directly upon the pose parameters by aligning the 3D model to reproduce a reference image shape. Using representative experiments, we demonstrate the application of our approach to pose estimation in proximity operations.
UR - http://www.scopus.com/inward/record.url?scp=85193841999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85193841999&partnerID=8YFLogxK
U2 - 10.2514/6.2023-2317
DO - 10.2514/6.2023-2317
M3 - Conference contribution
AN - SCOPUS:85193841999
SN - 9781624106996
T3 - AIAA SciTech Forum and Exposition, 2023
BT - AIAA SciTech Forum and Exposition, 2023
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA SciTech Forum and Exposition, 2023
Y2 - 23 January 2023 through 27 January 2023
ER -