Abstract
Human papillomavirus (HPV) infection is the leading cause of cervical cancer world-wide. Here, we show that native HPV particles produced in a differentiated epithelium have developed different strategies to infect the host. Using biochemical inhibition assays and glycosaminoglycan (GAG)-negative cells, we show that of the four most common cancer-causing HPV types, HPV18, HPV31, and HPV45 are largely dependent on GAGs to initiate infection. In contrast, HPV16 can bind and enter through a GAG-independent mechanism. Infections of primary human keratinocytes, natural host cells for HPV infections, support our conclusions. Further, this renders the different virus types differentially susceptible to carrageenan, a microbicide targeting virus entry. Our data demonstrates that ordered maturation of papillomavirus particles in a differentiating epithelium may alter the virus entry mechanism. This study should facilitate a better understanding of the attachment and infection by the main oncogenic HPV types, and development of inhibitors of HPV infection.
Original language | English (US) |
---|---|
Article number | e68379 |
Journal | PloS one |
Volume | 8 |
Issue number | 7 |
DOIs | |
State | Published - Jul 4 2013 |
All Science Journal Classification (ASJC) codes
- General Biochemistry, Genetics and Molecular Biology
- General Agricultural and Biological Sciences
- General