Diffraction gratings of isotropic negative-phase velocity materials

Ricardo Angel Depine, Akhlesh Lakhtakia

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Diffraction of electromagnetic plane waves by the gratings made by periodically corrugating the exposed planar boundaries of homogeneous, isotropic, linear dielectric-magnetic half-spaces is examined. The phase velocity vector in the diffracting material can be either co-parallel or anti-parallel to the time-averaged Poynting vector, thereby allowing for the material to be classified as of either the positive- or the negative-phase velocity (PPV or NPV) type. Three methods used for analyzing dielectric gratings - the Rayleigh-hypothesis method, a perturbative approach, and the C formalism - are extended here to encompass NPV gratings by a careful consideration of field representation inside the refracting half-space. Corrugations of both symmetric as well as asymmetric shapes are studied, as also the diversity of grating response to the linear polarization states of the incident plane wave. The replacement of PPV grating by its NPV analog affects only nonspecular diffraction efficiencies when the corrugations are shallow, and the effect on specular diffraction efficiencies intensifies as the corrugations deepen. Whether the type of the refracting material is NPV or PPV is shown to affect surface wave propagation as well as resonant excitation of surface waves.

Original languageEnglish (US)
Pages (from-to)31-43
Number of pages13
JournalOptik
Volume116
Issue number1
DOIs
StatePublished - Mar 18 2005

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Diffraction gratings of isotropic negative-phase velocity materials'. Together they form a unique fingerprint.

Cite this