Diffusion Bonding of AgC–Cu Bi-layered Electrical Contacts

Daudi R. Waryoba, Linsea Paradis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Due to the immiscibility of graphite in copper and silver, the conventional press and sinter method for fabrication of bi-layered silver graphite-copper electrical contacts are a challenging process. During sintering of silver graphite-copper compacts, silver diffuses into copper leaving a trace of graphite at the interface. This creates a poor interface between the mating surfaces, thereby decreasing the shear strength of the joint. In this work, interlayers with different compositions were used to promote diffusion bonding at various sintering conditions. The results show that vacuum diffusion bonding using an interlayer of Ag–Cu, with eutectic composition, is an effective method for fabricating the AgC–Cu bilayer electrical contacts.

Original languageEnglish (US)
Title of host publicationTMS 2020 149th Annual Meeting and Exhibition Supplemental Proceedings
EditorsZhiwei Peng, Jiann-Yang Hwang, Jerome Downey, Dean Gregurek, Baojun Zhao, Onuralp Yucel, Ender Keskinkilic, Tao Jiang, Jesse White, Morsi Mahmoud
PublisherSpringer
Pages2067-2075
Number of pages9
ISBN (Print)9783030362959
DOIs
StatePublished - 2020
Event149th Annual Meeting and Exhibition of the Minerals, Metals and Materials Society, TMS 2020 - San Diego, United States
Duration: Feb 23 2020Feb 27 2020

Publication series

NameMinerals, Metals and Materials Series
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696

Conference

Conference149th Annual Meeting and Exhibition of the Minerals, Metals and Materials Society, TMS 2020
Country/TerritoryUnited States
CitySan Diego
Period2/23/202/27/20

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy Engineering and Power Technology
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Diffusion Bonding of AgC–Cu Bi-layered Electrical Contacts'. Together they form a unique fingerprint.

Cite this