TY - JOUR
T1 - Dimensional renormalization of scalar field theory in curved space-time
AU - Brown, Lowell S.
AU - Collins, John C.
PY - 1980
Y1 - 1980
N2 - The regularization and renormalization of an interacting scalar field φ in a curved spacetime background is performed by the method of continuation to n dimensions. In addition to the familiar counter terms of the flat-space theory, c-number, “vacuum” counter terms must also be introduced. These involve zero, first, and second powers of the Reimann curvature tensor Rαβψδ. Moreover, the renormalizability of the theory requires that the Lagrange function couple φ2 to the curvature scalar R with a coupling constant η. The coupling η must obey an inhomogeneous renormalization group equation, but otherwise it is an arbitrary, free parameter. All the counter terms obey renormalization group equations which determine the complete structure of these quantities in terms of the residues of their simple poles in n − 4. The coefficient functions of the counter terms determine the construction of φ2 and φ4 in terms of renormalized composite operators 1, [φ2], and [φ4]. Two of the counter terms vanish in conformally flat space-time. The others may be computed from the theory in purely flat space-time. They are determined, in a rather intricate fashion, by the additive renormalizations for two-point functions of [φ2] and [φ4] in Minkowski space-time. In particular, using this method, we compute the leading divergence of the R2 interaction which is of fifth order in the coupling constant λ.
AB - The regularization and renormalization of an interacting scalar field φ in a curved spacetime background is performed by the method of continuation to n dimensions. In addition to the familiar counter terms of the flat-space theory, c-number, “vacuum” counter terms must also be introduced. These involve zero, first, and second powers of the Reimann curvature tensor Rαβψδ. Moreover, the renormalizability of the theory requires that the Lagrange function couple φ2 to the curvature scalar R with a coupling constant η. The coupling η must obey an inhomogeneous renormalization group equation, but otherwise it is an arbitrary, free parameter. All the counter terms obey renormalization group equations which determine the complete structure of these quantities in terms of the residues of their simple poles in n − 4. The coefficient functions of the counter terms determine the construction of φ2 and φ4 in terms of renormalized composite operators 1, [φ2], and [φ4]. Two of the counter terms vanish in conformally flat space-time. The others may be computed from the theory in purely flat space-time. They are determined, in a rather intricate fashion, by the additive renormalizations for two-point functions of [φ2] and [φ4] in Minkowski space-time. In particular, using this method, we compute the leading divergence of the R2 interaction which is of fifth order in the coupling constant λ.
UR - http://www.scopus.com/inward/record.url?scp=84997069825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84997069825&partnerID=8YFLogxK
U2 - 10.1016/0003-4916(80)90232-8
DO - 10.1016/0003-4916(80)90232-8
M3 - Article
AN - SCOPUS:84997069825
SN - 0003-4916
VL - 130
SP - 215
EP - 248
JO - Annals of Physics
JF - Annals of Physics
IS - 1
ER -