Direct detection of planets orbiting large angular diameter stars: Sensitivity of an internally occulting space-based coronagraph

Justin R. Crepp, Suvrath Mahadevan, Jian Ge

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

High-contrast imaging observations of large angular diameter stars enable complementary science questions to be addressed compared to the baseline goals of proposed missions like the Terrestrial Planet Finder-Coronagraph, New World's Observer, and others. Such targets, however, present a practical problem in that finite stellar size results in unwanted starlight reaching the detector, which degrades contrast. In this paper, we quantify the sensitivity, in terms of contrast, of an internally occulting, space-based coronagraph as a function of stellar angular diameter, from unresolved dwarfs to the largest evolved stars. Our calculations show that an assortment of band-limited image masks can accommodate a diverse set of observations to help maximize mission scientific return. We discuss two applications based on the results: the spectro-photometric study of planets already discovered with the radial velocity technique to orbit evolved stars, which we elucidate with the example of Pollux b, and the direct detection of planets orbiting our closest neighbor, α Centauri, whose primary component is on the main sequence but subtends an appreciable angle on the sky. It is recommended that similar trade studies be performed with other promising internal, external, and hybrid occulter designs for comparison, as there is relevance to a host of interesting topics in planetary science and related fields.

Original languageEnglish (US)
Pages (from-to)672-679
Number of pages8
JournalAstrophysical Journal
Volume702
Issue number1
DOIs
StatePublished - 2009

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Direct detection of planets orbiting large angular diameter stars: Sensitivity of an internally occulting space-based coronagraph'. Together they form a unique fingerprint.

Cite this