Abstract
Wearable electrochemical sensors provide means to detect molecular-level information from the biochemical markers in biofluids for physiological health evaluation. However, a high-density array is often required for multiplexed detection of multiple markers in complex biofluids, which is challenging with low-cost fabrication methods. This work reports the low-cost direct laser writing of porous graphene foam as a flexible electrochemical sensor to detect biomarkers and electrolytes in sweat. The resulting electrochemical sensor exhibits high sensitivity and low limit of detection for various biomarkers (e.g., the sensitivity of 6.49/6.87/0.94/0.16 μA μM-1 cm-2 and detection limit of 0.28/0.26/1.43/11.3 μM to uric acid/dopamine/tyrosine/ascorbic acid) in sweat. The results from this work open up opportunities for noninvasive continuous monitoring of gout, hydration status, and drug intake/overdose.
Original language | English (US) |
---|---|
Pages (from-to) | 34332-34342 |
Number of pages | 11 |
Journal | ACS Applied Materials and Interfaces |
Volume | 15 |
Issue number | 29 |
DOIs | |
State | Published - Jul 26 2023 |
All Science Journal Classification (ASJC) codes
- General Materials Science