Direct numerical simulation and linear stability analysis of the flow in a pebble bed

P. Ward, Y. Hassan, E. Merzari, P. Fischer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

The flow in a tightly packed array of spheres is important to various engineering fields. In nuclear engineering applications, for instance, researchers have proposed core geometries of the pebble bed reactor (PBR) type cooled by gas or molten salt. Proper core cooling, both at operation and during accident conditions, is a key issue that must be addressed in any reactor design; and the limited amount of data available for the complicated geometry of PBR cores makes this task even more complex. A detailed understanding of coolant flow patterns and properties must be developed in order to meet safety requirements and ensure core longevity. We address this issue by using the spectral-element computational fluid dynamics code Nek5000, developed at Argonne National Laboratory, to conduct both large eddy simulation (LES) and direct numerical simulation (DNS) of fluid flow through a single face-centered cubic sphere lattice with periodic boundary conditions. Moreover, a statistical analysis of the flow field and a global linear stability analysis of the laminar flow were performed in order to investigate the mechanism of laminar-turbulent transition in this geometry. One of the main objectives of the present study is, in fact, to determine how the Reynolds number affects the development of asymmetries within the flow patterns.

Original languageEnglish (US)
Title of host publicationSymposia
Subtitle of host publicationFundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846230
DOIs
StatePublished - 2014
EventASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels - Chicago, United States
Duration: Aug 3 2014Aug 7 2014

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1C
ISSN (Print)0888-8116

Other

OtherASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
Country/TerritoryUnited States
CityChicago
Period8/3/148/7/14

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Direct numerical simulation and linear stability analysis of the flow in a pebble bed'. Together they form a unique fingerprint.

Cite this