Direct numerical simulation of slot film cooling downstream of misaligned plates

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


When manufacturing a turbine engine, the combustor annulus and the turbine annulus are created as separate parts and assembled. This leads to an inter-platform gap between the two components, which must be supplied with leakage air to prevent ingestion of the extremely hot combustion gases into the interior of the engine. The combustor and the turbine are likely to misalign because of differential thermal expansion or assembly tolerances. This paper presents a direct numerical simulation study of inter-platform misalignment with leakage flow supplied at the junction of the platforms. The geometry is two misaligned plates with a cross-flow and a leakage flow simulated as a slot jet. The misalignment of the two plates gives rise to a forward misalignment configuration and a backward misalignment configuration, and the jet/cross-flow gives rise to a windward mixing layer and a leeward mixing layer. Compared with the aligned configuration, the cooling effectiveness immediately downstream of the gap decreases in the forward misalignment configuration and increases in the backward misalignment configuration; this response amplifies as the flow rate through the gap increases. In addition to the cooling effectiveness, we report flow statistics, including the velocity, the temperature, the turbulent kinetic energy and the relevant turbulent fluxes. We find strong turbulence generation in the leeward mixing layer and high turbulence level as a result. Mixing of the thermal energy, on the other hand, occurs predominantly in the windward mixing layer. The eddy viscosity and the eddy conductivity that are critical to turbulence modelling are also reported. We find negative eddy viscosity at regions where the incoming boundary layer starts to mix with the leakage jet. The analysis shows that the negative eddy viscosity is a result of flow hysteresis: it takes time, or travel distance, before the eddies in the incoming boundary layer and the eddies in the leakage jet come to an equilibrium, thereby favouring a transport Reynolds stress model over a local eddy viscosity type model. The novelty of this paper lies in the direct numerical simulations, which provide direct access to the near-wall flow field and clarify the effects of blowing ratio and platform misalignment on heat transfer. The novelty also lies in the data analysis, which sheds light on how this flow should be modelled.

Original languageEnglish (US)
Article numberE7
StatePublished - Mar 1 2022

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Engineering (miscellaneous)
  • Fluid Flow and Transfer Processes
  • Biomedical Engineering


Dive into the research topics of 'Direct numerical simulation of slot film cooling downstream of misaligned plates'. Together they form a unique fingerprint.

Cite this