TY - GEN
T1 - Direct numerical simulation of turbulent channel flow with heat transfer for low Prandtl and high Reynolds and comparison with Algebraic heat flux model
AU - Yuan, Haomin
AU - Merzari, Elia
N1 - Publisher Copyright:
Copyright © 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.
AB - The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.
UR - http://www.scopus.com/inward/record.url?scp=84959529876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959529876&partnerID=8YFLogxK
U2 - 10.1115/AJKFluids20158740
DO - 10.1115/AJKFluids20158740
M3 - Conference contribution
AN - SCOPUS:84959529876
T3 - ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015
BT - Symposia
PB - American Society of Mechanical Engineers
T2 - ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015
Y2 - 26 July 2015 through 31 July 2015
ER -