TY - GEN
T1 - Direct simulation of ultrafast detonations in mixtures
AU - O'Connor, Patrick D.
AU - Long, Lyle N.
AU - Anderson, James B.
PY - 2005/5/16
Y1 - 2005/5/16
N2 - For nearly a century experimental measurements of the velocities of detonations in gases have been found in general agreement with those of the Chapman-Jouguet (C-J) hypothesis predicting velocities, relative to the burned gases, equal to the speed of sound in the burned gases. This was further supported by the Zeldovich - von Neumann - Döring (ZND) theories predicting Chapman-Jouguet velocities for detonations in which the shock and reaction zones are separated. However, for a very fast reaction, the shock and reaction regions overlap and the assumptions required for the C-J and ZND theories are no longer valid. Previous work with the direct simulation method established conditions for forcing the reaction and shock regions to coalesce in a detonation wave by means of a very fast exothermic reaction. The resulting detonation velocities were characterized as ultrafast, as they were found to exceed the steady-state velocities predicted by the C-J and ZND theories. Continued investigation into the ultrafast regime has allowed for the further development of this inconsistency with theory by including a heavy non-reacting gas in the mixture. The resulting gaseous mixtures closely followed the C-J predicted behavior for slow reactions, and for very fast reactions were found to produce ultrafast detonations with a substantially greater deviation from C-J behavior.
AB - For nearly a century experimental measurements of the velocities of detonations in gases have been found in general agreement with those of the Chapman-Jouguet (C-J) hypothesis predicting velocities, relative to the burned gases, equal to the speed of sound in the burned gases. This was further supported by the Zeldovich - von Neumann - Döring (ZND) theories predicting Chapman-Jouguet velocities for detonations in which the shock and reaction zones are separated. However, for a very fast reaction, the shock and reaction regions overlap and the assumptions required for the C-J and ZND theories are no longer valid. Previous work with the direct simulation method established conditions for forcing the reaction and shock regions to coalesce in a detonation wave by means of a very fast exothermic reaction. The resulting detonation velocities were characterized as ultrafast, as they were found to exceed the steady-state velocities predicted by the C-J and ZND theories. Continued investigation into the ultrafast regime has allowed for the further development of this inconsistency with theory by including a heavy non-reacting gas in the mixture. The resulting gaseous mixtures closely followed the C-J predicted behavior for slow reactions, and for very fast reactions were found to produce ultrafast detonations with a substantially greater deviation from C-J behavior.
UR - http://www.scopus.com/inward/record.url?scp=33749009601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33749009601&partnerID=8YFLogxK
U2 - 10.1063/1.1941588
DO - 10.1063/1.1941588
M3 - Conference contribution
AN - SCOPUS:33749009601
SN - 0735402477
SN - 9780735402478
T3 - AIP Conference Proceedings
SP - 517
EP - 522
BT - RAREFIED GAS DYNAMICS
T2 - 24th International Symposium on Rarefied Gas Dynamics, RGD24
Y2 - 10 July 2004 through 16 July 2004
ER -