Directive and focused acoustic wave radiation by tessellated transducers with folded curvatures

Danielle T. Lynd, Chengzhe Zou, Joseph Crump, Ryan L. Harne

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Foldable, origami-inspired transducer arrays have recently been found to offer a straightforward approach of topological transformations on a single tessellated array, rather than signal controls on many transducers, to enable orders of magnitude tuning of acoustic wave guiding capability. Although optimization approaches exist to develop tessellations that serve simple mechanical functions, there are not yet established methods to design tessellated acoustic arrays for targeted acoustic wave guiding properties. This research presents a first approach to design, evaluate, and iteratively refine the tessellations that make up origami-inspired acoustic transducer arrays for desired wave guiding abilities. To exemplify the procedure, two folding patterns are investigated using this process. The approach aims to integrate computational tools to create the tessellation, modify the design based on intuition or prior knowledge, evaluate the acoustic wave radiation characteristics, and iterate on the design according to the outcomes of the evaluations. The two examples exemplify the efficacy of this new process and identify means for improvement and automation. The approach will enable ongoing efforts to devise origami-inspired acoustic transducers and arrays that may serve diverse applications demanding adaptable acoustic wave energy guiding, from biomedical imaging and diagnostics to portable communication and alert devices.

Original languageEnglish (US)
JournalProceedings of Meetings on Acoustics
Volume30
Issue number1
DOIs
StatePublished - Jun 25 2017
Event173rd Meeting of Acoustical Society of America, Acoustics 2017 and 8th Forum Acusticum - Boston, United States
Duration: Jun 25 2017Jun 29 2017

All Science Journal Classification (ASJC) codes

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Directive and focused acoustic wave radiation by tessellated transducers with folded curvatures'. Together they form a unique fingerprint.

Cite this