TY - GEN
T1 - Discovering frequent patterns in sensitive data
AU - Bhaskar, Raghav
AU - Laxman, Srivatsan
AU - Smith, Adam
AU - Thakurta, Abhradeep
PY - 2010
Y1 - 2010
N2 - Discovering frequent patterns from data is a popular exploratory technique in data mining. However, if the data are sensitive (e.g., patient health records, user behavior records) releasing information about significant patterns or trends carries significant risk to privacy. This paper shows how one can accurately discover and release the most significant patterns along with their frequencies in a data set containing sensitive information, while providing rigorous guarantees of privacy for the individuals whose information is stored there. We present two efficient algorithms for discovering the k most frequent patterns in a data set of sensitive records. Our algorithms satisfy differential privacy, a recently introduced definition that provides meaningful privacy guarantees in the presence of arbitrary external information. Differentially private algorithms require a degree of uncertainty in their output to preserve privacy. Our algorithms handle this by returning 'noisy' lists of patterns that are close to the actual list of k most frequent patterns in the data. We define a new notion of utility that quantifies the output accuracy of private top-k pattern mining algorithms. In typical data sets, our utility criterion implies low false positive and false negative rates in the reported lists. We prove that our methods meet the new utility criterion; we also demonstrate the performance of our algorithms through extensive experiments on the transaction data sets from the FIMI repository. While the paper focuses on frequent pattern mining, the techniques developed here are relevant whenever the data mining output is a list of elements ordered according to an appropriately 'robust' measure of interest.
AB - Discovering frequent patterns from data is a popular exploratory technique in data mining. However, if the data are sensitive (e.g., patient health records, user behavior records) releasing information about significant patterns or trends carries significant risk to privacy. This paper shows how one can accurately discover and release the most significant patterns along with their frequencies in a data set containing sensitive information, while providing rigorous guarantees of privacy for the individuals whose information is stored there. We present two efficient algorithms for discovering the k most frequent patterns in a data set of sensitive records. Our algorithms satisfy differential privacy, a recently introduced definition that provides meaningful privacy guarantees in the presence of arbitrary external information. Differentially private algorithms require a degree of uncertainty in their output to preserve privacy. Our algorithms handle this by returning 'noisy' lists of patterns that are close to the actual list of k most frequent patterns in the data. We define a new notion of utility that quantifies the output accuracy of private top-k pattern mining algorithms. In typical data sets, our utility criterion implies low false positive and false negative rates in the reported lists. We prove that our methods meet the new utility criterion; we also demonstrate the performance of our algorithms through extensive experiments on the transaction data sets from the FIMI repository. While the paper focuses on frequent pattern mining, the techniques developed here are relevant whenever the data mining output is a list of elements ordered according to an appropriately 'robust' measure of interest.
UR - http://www.scopus.com/inward/record.url?scp=77956209107&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956209107&partnerID=8YFLogxK
U2 - 10.1145/1835804.1835869
DO - 10.1145/1835804.1835869
M3 - Conference contribution
AN - SCOPUS:77956209107
SN - 9781450300551
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 503
EP - 512
BT - KDD'10 - Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
T2 - 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD-2010
Y2 - 25 July 2010 through 28 July 2010
ER -