Abstract
We present results from Chandra and XMM-Newton observations of the low-ionization broad absorption line (LoBAL) quasar H 1413+117. Our spatial and spectral analysis of a recent deep Chandra observation confirms a microlensing event in a previous Chandra observation performed about five years earlier. We present constraints on the structure of the accretion flow in H 1413+117 based on the timescale of this microlensing event. Our analysis of the combined spectrum of all the images indicates the presence of two emission peaks at rest-frame energies of 5.35 and 6.32 keV, detected at the ≳98% and ≳99% confidence levels, respectively. The double-peaked Fe emission line is fit well with an accretion-disk line model; however, the best-fitting model parameters are neither well constrained nor unique. Additional observations are required to constrain the model parameters better and to confirm the relativistic interpretation of the double-peaked Fe Kα line. Another possible interpretation of the Fe emission is fluorescent Fe emission from the back side of the wind. The spectra of images C and D show significant high-energy broad absorption features that extend up to rest-frame energies of 9 and 15 keV, respectively. We propose that a likely cause of these differences is significant variability of the outflow on timescales that are shorter than the time delays between the images. The Chandra observation of H 1413+117 has made possible for the first time the detection of the inner regions of the accretion disk and/or wind and the high ionization component of the outflowing wind of a LoBAL quasar.
Original language | English (US) |
---|---|
Pages (from-to) | 678-692 |
Number of pages | 15 |
Journal | Astrophysical Journal |
Volume | 661 |
Issue number | 2 I |
DOIs | |
State | Published - Jun 1 2007 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science