TY - JOUR
T1 - Discrete Choice Models with Alternate Kernel Error Distributions
AU - Paleti, Rajesh
N1 - Publisher Copyright:
© 2019, Indian Institute of Science.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The multinomial logit (MNL) and probit (MNP) models dominated the literature on consumer behavior analysis, particularly in the transportation planning context where the focus is on future travel demand prediction as an aggregated outcome of individual traveler choices. While Gumbel kernel errors in the MNL model are unbounded and positively skewed, normal kernel errors in the MNP model are symmetric and unbounded. However, choice models with alternative kernel errors (beyond Gumbel and normal distributions) have piqued the interest of choice modelers for behavioral and prediction accuracy reasons. In addition, researchers found evidence in support of these alternate kernel errors in a wide variety of empirical contexts. This paper compiles a synthesis of the past literature that developed choices models with flexible kernel errors, including both parametric and semi-parametric methods and concludes with possible avenues for further research.
AB - The multinomial logit (MNL) and probit (MNP) models dominated the literature on consumer behavior analysis, particularly in the transportation planning context where the focus is on future travel demand prediction as an aggregated outcome of individual traveler choices. While Gumbel kernel errors in the MNL model are unbounded and positively skewed, normal kernel errors in the MNP model are symmetric and unbounded. However, choice models with alternative kernel errors (beyond Gumbel and normal distributions) have piqued the interest of choice modelers for behavioral and prediction accuracy reasons. In addition, researchers found evidence in support of these alternate kernel errors in a wide variety of empirical contexts. This paper compiles a synthesis of the past literature that developed choices models with flexible kernel errors, including both parametric and semi-parametric methods and concludes with possible avenues for further research.
UR - http://www.scopus.com/inward/record.url?scp=85074420167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074420167&partnerID=8YFLogxK
U2 - 10.1007/s41745-019-00128-6
DO - 10.1007/s41745-019-00128-6
M3 - Review article
AN - SCOPUS:85074420167
SN - 0970-4140
VL - 99
SP - 673
EP - 681
JO - Journal of the Indian Institute of Science
JF - Journal of the Indian Institute of Science
IS - 4
ER -