Discrete-Continuous Gaussian Mixture Models for Wind Power Generation

Tianyang Yi, Shibshankar Dey, D. Adrian Maldonado, Sanjay Mehrotra, Anirudh Subramanyam

Research output: Contribution to journalConference articlepeer-review

Abstract

Gaussian Mixture Models (GMM) are an effective representation of resource uncertainty in power systems planning, as they can be tractably incorporated within stochastic optimization models. However, the skewness, multimodality, and bounded physical support of long-term wind power forecasts can entail requiring a large number of mixture components to achieve a good fit, leading to complex optimization problems. We propose a probabilistic model for wind generation uncertainty to address this challenge, termed Discrete-Gaussian Mixture Model (DGMM), that combines continuous Gaussian components with discrete masses. The model generalizes classical GMMs that have been widely used to estimate wind power outputs. We employ a modified Expectation-Maximization algorithm (called FixedEM) to estimate the parameters of the DGMM. We provide empirical results on the ACTIVSg2000 synthetic wind generation dataset, where we demonstrate that the fitted DGMM is capable of capturing the high frequencies of time windows when wind generating units are either producing at maximum capacity or not producing any power at all. Furthermore, we find that the Bayesian Information Criterion of the DGMM is significantly lower compared to that of existing GMMs using the same number of Gaussian components. This improvement is particularly advantageous when the allowed number of Gaussian components is limited, facilitating the efficient solution to optimization problems for long-term planning.

Original languageEnglish (US)
JournalIEEE Power and Energy Society General Meeting
DOIs
StatePublished - 2024
Event2024 IEEE Power and Energy Society General Meeting, PESGM 2024 - Seattle, United States
Duration: Jul 21 2024Jul 25 2024

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Nuclear Energy and Engineering
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Discrete-Continuous Gaussian Mixture Models for Wind Power Generation'. Together they form a unique fingerprint.

Cite this