Abstract
We construct a computational framework for automatic central nervous system (CNS) disease discrimination using high resolution Magnetic Resonance Images (MRI) of human brains. More than 3000 MR image features are extracted, forming a high dimensional coarse-to-fine hierarchical image description that quantifies brain asymmetry, texture and statistical properties in corresponding local regions of the brain. Discriminative image feature subspaces are computed, evaluated and selected automatically. Our initial experimental results show 100% and 90% separability between chronicle schizophrenia (SZ) and first episode SZ versus their respective matched controls. Under the same computational framework, we also find higher than 95% separability among Alzheimer's Disease, mild cognitive impairment patients, and their matched controls. An average of 88% classification success rate is achieved using leave-one-out cross validation on five different well-chosen patient-control image sets of sizes from 15 to 27 subjects per disease class.
Original language | English (US) |
---|---|
Pages (from-to) | 393-401 |
Number of pages | 9 |
Journal | Lecture Notes in Computer Science |
Volume | 3216 |
Issue number | PART 1 |
DOIs | |
State | Published - 2004 |
Event | Medical Image Computing and Computer-Assisted Intervention, MICCAI 2004 - 7th International Conference, Proceedings - Saint-Malo, France Duration: Sep 26 2004 → Sep 29 2004 |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- General Computer Science