Discriminative phrase embedding for paraphrase identification

Wenpeng Yin, Hinrich Schütze

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

This work, concerning paraphrase identification task, on one hand contributes to expanding deep learning embeddings to include continuous and discontinuous linguistic phrases. On the other hand, it comes up with a new scheme TF-KLD-KNN to learn the discriminative weights of words and phrases specific to paraphrase task, so that a weighted sum of embeddings can represent sentences more effectively. Based on these two innovations we get competitive state-of-the-art performance on paraphrase identification.

Original languageEnglish (US)
Title of host publicationNAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages1368-1373
Number of pages6
ISBN (Electronic)9781941643495
DOIs
StatePublished - 2015
EventConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015 - Denver, United States
Duration: May 31 2015Jun 5 2015

Publication series

NameNAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

ConferenceConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015
Country/TerritoryUnited States
CityDenver
Period5/31/156/5/15

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Discriminative phrase embedding for paraphrase identification'. Together they form a unique fingerprint.

Cite this