Discriminative sparse representations with applications

Vishal Monga, Trac Tran

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Significant advances in compressive sensing and sparse signal encoding have provided a rich set of mathematical tools for signal analysis and representation. In addition to novel formulations for enabling sparse solutions to underdetermined systems, exciting progress has taken place in efficiently solving these problems from an optimization theoretic viewpoint. The focus of the wide body of literature in compressive sensing/sparse signal representations has however been on the problem of signal recovery from a small number of measurements (equivalently a sparse coefficient vector). This tutorial will discuss the design of sparse signal representations explicitly for the purposes of signal classification. The tutorial will focus on and build upon two significant recent advances. First, the work by Wright et al. which advocates the use of a dictionary (or basis) matrix comprising of class-specific training sub-dictionaries. In this framework, a test signal is modeled as a sparse linear combination of training vectors in the dictionary, sparsity being enforced by the assertion that only coefficients corresponding to one class (from which the test signal is drawn) ought to be active. The second set of ideas we leverage are recent key contributions in model-based compressive sensing where prior information or constraints on sparse coefficients are used to enhance signal recovery. These ideas will be combined towards the exposition of current trends: namely the development of class-specific priors or constraints to capture structure on sparse coefficients that helps explicitly distinguish between signal classes. In the second part of the tutorial, applications will be discussed including: 1.) structured sparsity for classification of medical imagery for diagnostics, 2.) low-rank approximation and sparse recovery for visual data reconstruction, and 3.) sparse representations for target detection and classification in hyperspectral imagery (guest speaker from the US Army Research Lab).

Original languageEnglish (US)
Title of host publication2013 American Control Conference, ACC 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2280-2282
Number of pages3
ISBN (Print)9781479901777
DOIs
StatePublished - 2013
Event2013 1st American Control Conference, ACC 2013 - Washington, DC, United States
Duration: Jun 17 2013Jun 19 2013

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Other

Other2013 1st American Control Conference, ACC 2013
Country/TerritoryUnited States
CityWashington, DC
Period6/17/136/19/13

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Discriminative sparse representations with applications'. Together they form a unique fingerprint.

Cite this