Dislocation bending and tensile stress generation in GaN and AlGaN films

Srinivasan Raghavan, Ian C. Manning, Xiaojun Weng, Joan M. Redwing

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The growth of GaN and AlGaN films is accompanied by dislocation bending, interaction, density reduction and tensile stress generation to varying degrees. A kinetic model involving outdiffusion of atoms at the growth surface has been adapted to rationalize all of these phenomena using a single platform. Active contribution of dislocation interaction, apart from stress and a surface chemical potential, to the driving force for outdiffusion of atoms from the growth surface has been considered. The kinetic model has then been used to explain stress evolution during growth of GaN films on Si using an AlN buffer layer, an example of a most general case. Stress-thickness relations obtained from the model have been fitted to experimental data to derive basic outdiffusion parameters. These parameters have been used to analyze experimental observations of dislocation structure evolution. The model is able to account for the varying degrees of dislocation bending and interaction observed in these films.

Original languageEnglish (US)
Pages (from-to)35-42
Number of pages8
JournalJournal of Crystal Growth
Volume359
Issue number1
DOIs
StatePublished - Nov 15 2012

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Dislocation bending and tensile stress generation in GaN and AlGaN films'. Together they form a unique fingerprint.

Cite this